Weiner Mihály

egyetemi docens


Publikációk és hivatkozások:
  • Matrix algebras and finite dimensional linear analysis in the context of Quantum Information Theory
  • Operator Algebras and their role in Quantum Field Theory

Kiemelt publikációk

  • S. Carpi, Y. Kawahigashi, R. Longo and M. Weiner:
    From vertex operator algebras to conformal nets and back.
    Mem. Amer. Math. Soc. 254 (2018)
  • P. E. Frenkel and M. Weiner:
    Classical information storage in an n-level quantum system.
    Commun. Math. Phys. 340 (2015), 563-574.
  • P. E. Frenkel and M. Weiner:
    On vector configurations that can be realized in the cone of positive matrices.
    Linear Alg. Appl. 459 (2014), 465-474.
  • M. Weiner:
    A gap for the maximum number of mutually unbiased bases.
    Proc. Amer. Math. Soc. 141 (2013), 1963-1969.
  • P. Camassa, R. Longo, Y. Tanimoto and M. Weiner:
    Thermal States in Conformal QFT. I
    Commun. Math. Phys. 309 (2012), 703-735.
  • M. Weiner:
    An algebraic version of Haag's theorem.
    Commun. Math. Phys. 305 (2011), 469-485.
  • M. Weiner:
    On orthogonal systems of matrix algebras.
    Linear Alg. Appl. 433 (2010), 520-533.
  • P. Jaming, M. Matolcsi, P. Móra, F. Szöllősi and M. Weiner:
    A generalized Pauli problem and an infnite family of MUB-triplets in dimension 6.
    J. Physics A: Mathematical and Theoretical, 42 (2009), 245305.
  • M. Weiner:
    Restricting Positive Energy Representations of Diff+(S1) to the Stabilizer of n Points.
    Commun. Math. Phys. 277 (2008), 555-571.
  • M. Weiner:
    Conformal Covariance and Positivity of Energy in Charged Sectors.
    Commun. Math. Phys. 265 (2006), 493-506.
  • S. Carpi and M. Weiner:
    On the uniqueness of diffeomorphism symmetry in conformal field theory.
    Commun. Math. Phys. 258 (2005), 203-221.