Beosztás:
egyetemi docens
Fokozat:
PhD
Szoba:
H666
Email:
mweiner@math.bme.hu
Személyes honlap:
Telefon:
463-2767
- Matrix algebras and finite dimensional linear analysis in the context of Quantum Information Theory
- Operator Algebras and their role in Quantum Field Theory
Kiemelt publikációk
- S. Carpi, Y. Kawahigashi, R. Longo and M. Weiner:
From vertex operator algebras to conformal nets and back.
Mem. Amer. Math. Soc. 254 (2018) - P. E. Frenkel and M. Weiner:
Classical information storage in an n-level quantum system.
Commun. Math. Phys. 340 (2015), 563-574. - P. E. Frenkel and M. Weiner:
On vector configurations that can be realized in the cone of positive matrices.
Linear Alg. Appl. 459 (2014), 465-474. - M. Weiner:
A gap for the maximum number of mutually unbiased bases.
Proc. Amer. Math. Soc. 141 (2013), 1963-1969. - P. Camassa, R. Longo, Y. Tanimoto and M. Weiner:
Thermal States in Conformal QFT. I
Commun. Math. Phys. 309 (2012), 703-735. - M. Weiner:
An algebraic version of Haag's theorem.
Commun. Math. Phys. 305 (2011), 469-485. - M. Weiner:
On orthogonal systems of matrix algebras.
Linear Alg. Appl. 433 (2010), 520-533. - P. Jaming, M. Matolcsi, P. Móra, F. Szöllősi and M. Weiner:
A generalized Pauli problem and an infnite family of MUB-triplets in dimension 6.
J. Physics A: Mathematical and Theoretical, 42 (2009), 245305. - M. Weiner:
Restricting Positive Energy Representations of Diff+(S1) to the Stabilizer of n Points.
Commun. Math. Phys. 277 (2008), 555-571. - M. Weiner:
Conformal Covariance and Positivity of Energy in Charged Sectors.
Commun. Math. Phys. 265 (2006), 493-506. - S. Carpi and M. Weiner:
On the uniqueness of diffeomorphism symmetry in conformal field theory.
Commun. Math. Phys. 258 (2005), 203-221.