Béla Nagy

Assignment: 
retired university professor, professor emeritus
Degree: 
Ph.D. of the Hungarian Academy of Sciences
Office: 
-
Email: 
bnagy@math.bme.hu
Telephone: 
+36-1-463-1857

Teaching

Mathematics B1, B2 for chemistry students.

Functional analysis and operator theory for mathematics students.

Research

Publications and citations:
MTMT

Structure and spectral theory of linear operators on Banach spaces
Spectral decompositions and local spectra
Nonnegative matrices and operators in ordered Banach spaces
Operator semigroups and cosine operator functions
Finite-dimensional positive linear systems

Most important Publications

1.    (with K.-H. Förster) On nonnegative realizations of rational matrix functions and nonnegative input-output systems, pp. 89-104 in: Operator Theory: Advances and Applications, Vol. 103, Birkhauser Verlag, Basel, 1998. MR 99f:93022.

2.    Periodic groups of operators in Banach spaces, Proc. Amer. Math. Soc., 126 (1998), 1433-1444. MR 98j:47081.

3.    (with K.-H. Förster) The index of triangular operator  matrices, Proc. Amer. Math. Soc., 128 (2000), 1167-1176. MR 2000i:47003.

4.    (with K.-H. Förster) Nonnegative realizations of  matrix transfer functions, Lin. Algebra Appl., 311 (2000), 107-129. MR 2001b:93014.

5.    (with J. Zemánek) A resolvent condition implying power  boundedness, Studia Math. (Warszawa), 134 (1999), 143-151.

6.  Inverse elementary divisor problems for nonnegative matrices, Operators and Matrices, 5/2 (2011), 289-301.

7.  Multiplicites, generalized Jacobi matrices, and symmetric operators, Journal of Operator Theory, 65/1 (2011), 211-232.

8. Subnormal operators, cyclic vectors and reductivity, Studia Mathematica, 216 (2013), 97-109.

9.  On contractions in Hilbert space, Acta Scientiarium Mathematicarum-Szeged, 79/1-2 (2013), 235-251.

10. Orthonormal Jordan bases in finite dimensional Hilbert spaces, Operators and Matrices, 9/1 (2015), 189-201.