Week 5

Numerical methods for physicists, 2018/19 autumn semester

Partial pivoting, general LU decomposition - lu
Problem. 1. Solve the system

$$
\begin{aligned}
10^{-5} x+y & =1 \\
x+y & =2
\end{aligned}
$$

with the Gaussian method without and with partial pivoting using decimal floating point numbers with four-digit-long mantissas. Compare the results. Give the general LU decomposition of the coefficient matrix in exact arithmetic.

Cholesky decomposition - chol
Problem. 2. The LU decomposition of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
4 & 2 & 1 \\
2 & 17 & 13 / 2 \\
1 & 13 / 2 & 23 / 2
\end{array}\right]
$$

is given in concise form

$$
\left[\begin{array}{ccc}
4 & 2 & 1 \\
1 / 2 & 16 & 6 \\
1 / 4 & 3 / 8 & 9
\end{array}\right]
$$

Give the Cholesky decomposition of \mathbf{A} if it exists.
Problem. 3. Give the Cholesky decomposition of the matrix \mathbf{A} in Problem 2 directly, that is without computing the LU decomposition.

Problem. 4. Solve the system $\mathbf{A} \overline{\mathbf{x}}=[3,-9 / 2,-21 / 2]^{T}$ (\mathbf{A} is the matrix from Problem 2) using the Cholesky decomposition of the matrix.

Iterative solutions of linear systems (Jacobi and Gauss-Seidel iterations and their relaxed versions)

Problem. 5. Solve the system

$$
\left[\begin{array}{ccc}
-1 & 5 & -2 \\
1 & 1 & -4 \\
4 & -1 & 2
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right]
$$

with an appropriate (!) iterative solver. Write the computer code in Matlab. Estimate the number of the necessary iteration steps if we would like to achieve an error of 10^{-9} in maximum norm and the iteration starts at $\overline{\mathbf{x}}_{0}=[0,0,0]^{T}$.

Problem. 6. Which iterative solvers can be used to solve the system

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] ?
$$

Compute the optimal choice for the relaxation parameter ω in the JOR method. Compare the number of iterations needed to achieve an error of 10^{-6} in maximum norm with the optimal ω parameter and with $\omega=0.01$ (we start the iteration from the zero vector).

Homework for week 5 - to be submitted until the next computer lab (The detailed solutions can be submitted either on A4 sheets of paper (printed or written) or in a pdf file (e.g. in an exported Matlab livescript) to rhorvath@math.bme.hu. Do not send Matlab files. Answer all questions with a sentence at the end of each problem.)

1. $(2 \mathrm{p})$ Calculate the solution of the system

$$
\begin{aligned}
0.003 x_{1}+59.14 x_{2} & =59.17 \\
5.291 x_{1}-6.13 x_{2} & =46.78
\end{aligned}
$$

manually using the Gaussian method with and without partial pivoting such that we round all computed values to four-digit-long mantissas. Compare the result with the exact solution $x_{1}=10, x_{2}=1$.

