Weeks 3-4

Numerical methods for physicists, 2018/19 autumn semester

Strictly diagonally dominant matrices, SPD matrices, M-matrices
Problem. 1. Show that the matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

is an M-matrix. Give an upper bound for its inverse in maximum norm.
Problem. 2. Show that the matrix in Problem 1 is symmetric positive definite.
Problem. 3. Show that if the diagonal of a matrix is positive, the offdiagonal is nonpositive, and the matrix is strictly diagonally dominant, then the matrix is an Mmatrix.

Conditioning of linear systems (Condition number of a matrix, sensibility of the solution of a SLAEs to the coefficients)

Problem. 4. Give an upper bound in maximum and 1-norms for the condition number of the matrix A in Problem 1. Compute the condition numbers with Matlab.

Problem. 5. Let

$$
\mathbf{A}=\left[\begin{array}{cccc}
3 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
0 & -1 & -1 & 3
\end{array}\right]
$$

and let $\tilde{\mathbf{A}}$ be an arbitrary 4×4 matrix such that $\max _{i, j}\left|a_{i j}-\tilde{a}_{i j}\right| \leq 0.02$. Give an upper estimate for the relative change of the solution of the system $\mathbf{A} \overline{\mathbf{x}}=[1,1,1,1]^{T}$ if we change the matrix \mathbf{A} to $\tilde{\mathbf{A}}$. Let us suppose that we know that $\left\|\mathbf{A}^{-1}\right\|_{\infty}=2.5$. Check the result in Matlab.

Problem. 6. The vector $\overline{\mathbf{r}}=\overline{\mathbf{b}}-\mathbf{A} \overline{\mathbf{y}}$ is called the residual vector of the system $\mathbf{A} \overline{\mathbf{x}}=\overline{\mathbf{b}}$ for the fixed vector $\overline{\mathbf{y}}$. Compute the residual vectors of the system

$$
\left[\begin{array}{ll}
34 & 55 \\
55 & 89
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{l}
21 \\
34
\end{array}\right]
$$

for the vectors

$$
\overline{\mathbf{x}}_{1}=\left[\begin{array}{c}
-0.11 \\
0.45
\end{array}\right], \quad \overline{\mathbf{x}}_{2}=\left[\begin{array}{c}
-0.99 \\
1.01
\end{array}\right] .
$$

What do you think which vector approximates better the exact solution $\overline{\mathbf{x}}^{\star}$ of the system? Construct an upper bound for the $\left\|\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}^{\star}\right\|$ error using the norm of the residual vector.

Problem. 7. Solve the system

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & 4 \\
-1 & 5 & 8
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{c}
4 \\
14 \\
17
\end{array}\right]
$$

with the Gaussian elimination method. Give the LU decomposition of the coefficient matrix.

Problem. 8. Count the number of operations of the Gauss-Jordan solution method of linear systems (we eliminate elements both below and above the diagonal). Compare the result with the number of the operations of the Gaussian method. (Gauss-Jordan method is useful for inverting matrices, operation count $2 n^{3}+O\left(n^{2}\right)$)

Homework for weeks 3-4 - to be submitted until the next computer lab (The detailed solutions can be submitted either on A4 sheets of paper (printed or written) or in a pdf file (e.g. in an exported Matlab livescript) to rhorvath@math.bme.hu. Do not send Matlab files. Answer all questions with a sentence at the end of each problems.)

1. (2p) Write the Matlab code that solves the system

$$
\begin{aligned}
\varepsilon x_{1}+x_{2} & =1 \\
x_{1}+x_{2} & =0
\end{aligned}
$$

using the Gaussian method with $\varepsilon=10^{-16}$. What is the solution given by Matlab? The exact solution should be

$$
\overline{\mathbf{x}}^{\star}=\left[\frac{1}{\varepsilon-1}, \frac{-1}{\varepsilon-1}\right]^{T}
$$

Explain the difference of the exact and the computed solutions (see Slide 27).
2. (1p) Give the LU decomposition of the matrix

$$
\left[\begin{array}{ccc}
4 & 1 & -2 \\
1 & 17 / 4 & 1 / 6 \\
-2 & 1 / 6 & 19 / 9
\end{array}\right]
$$

manually.

