Week 11

Numerical methods for physicists, 2018/19 autumn semester

Trigonometric interpolation-fft, ifft
Problem 1. Let us construct the trigonometric interpolation polynomial to the function $f(x)=|x-\pi|$ on 4 equidistant interpolation nodes.

Problem 2. The values of a function f at 6 equidistant nodes on the interval $[0,2 \pi]$ are $0,1,1,0,-1,-1$, respectively. a) Calculate the coefficient of $\sin x$ in the trigonometric interpolation polynomial manually. b) Use Matlab's fft command to calculate the complex and real discrete Fourier coefficients. c) Apply the fast Fourier transform manually to calculate the complex and real discrete Fourier coefficients.

Problem 3. The vector f in the code found in the m-file represents a sampling vector from a noisy 2π periodic signal. Use the fast Fourier transform to filter out the noise from the signal.

Numerical differentiation
Problem 4. Calculate the approximate first derivative of the function $f(x)=1 / x$ at the point $x_{0}=0.05$ using the forward difference formula with mesh sizes $h_{1}=0.0016$ and $h_{2}=0.0008$. Use Richardson extrapolation to give a better estimate for the derivative.

Problem 5. Show that the forward finite difference formula

$$
D=\frac{-3 f_{0}+4 f_{1}-f_{2}}{2 h}
$$

approximates the first order derivative with convergence order 2 . Check the result on the function of the previous problem. Use Richardson extrapolation to give a better estimate for the derivative.

Homework for week 11 - to be submitted until the next computer lab (The detailed solutions can be submitted either on A4 sheets of paper (printed or written) or in a pdf file (e.g. in an exported Matlab livescript) to rhorvath@math.bme.hu. Do not send Matlab files. Answer all questions with a sentence at the end of each problem.)

1. $(2 \mathrm{p})$ Let us fit an interpolation polynomial to the points $\left(x_{-1}, f_{-1}\right),\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right)$ $\left(x_{0}-x_{-1}=x_{1}-x_{0}=h\right)$ and compute the first and second derivatives of the interpolation polynomial at $x=x_{0}$. How do these values relate to some finite difference approximations of the derivatives?
2. (2p) Let us consider the 2π periodic function

$$
f(x)= \begin{cases}x, & \text { if } 0 \leq x<\pi \\ 0, & \text { if } \pi \leq x<2 \pi\end{cases}
$$

Use trigonometric interpolation to interpolate the function at 60 nodes, and plot this interpolation polynomial (use Matlab fft function). Compute the coefficient of $\cos x$ directly.

