Week 10

Numerical methods for physicists, 2018/19 autumn semester

Interpolation with polynomials - polyfit, polyval, spline, ppval
Problem 1. Construct the interpolation polynomial to the points $(-1,6),(0,3),(1,2)$ with Lagrange's and Newton's methods.

Problem 2. We interpolate the function $f(x)=\ln (x+1)$ on the nodes $0,0.6,0.9$. Give an upper bound for the interpolation error at the point $x=0.45$.

Problem 3. We would like to interpolate the function $f(x)=\sin x$ with a piecewise linear function on the interval $[0, \pi]$ using equidistant nodes. Give an upper estimate to the step size that guarantees an interpolation error less than 0.001 on the whole interval.

Problem 4. We interpolate Runge's function $f(x)=1 /\left(1+x^{2}\right)$ in the interval $[-1,1]$ on 12 Chebyshev nodes. Estimate the interpolation error (use Matlab to compute and estimate the derivatives of the function).

Problem 5. Give the polynomial p with the smallest degree possible such that $p(1)=$ $2, p(3)=1, p^{\prime}(1)=1$ and $p^{\prime}(3)=2$.

Problem 6. Construct the piecewise cubic natural spline that interpolates the points $(1,2),(2,1),(3,1)$.

Homework for week 10 - to be submitted until the next computer lab (The detailed solutions can be submitted either on A4 sheets of paper (printed or written) or in a pdf file (e.g. in an exported Matlab livescript) to rhorvath@math.bme.hu. Do not send Matlab files. Answer all questions with a sentence at the end of each problem.)

1. (2p) Let us interpolate the function $f(x)=\sqrt[4]{x}+x-2$ on the following three nodes: $x=16,625 / 16,81$. Give the interpolation polynomial (simplification is not necessary). Give an upper bound for the error of the interpolation at the point $x=25$.
2. (2p) We interpolate the function $f(x)=x^{3}$ on three Chebyshev nodes in the interval $[-1,1]$. Construct the interpolation polynomial and show manually that the interpolation error is not greater than $1 / 4$!
3. (2p) Construct the piecewise cubic clamped spline s that interpolates the points $(1,2),(2,1),(3,1)$ and satisfies the conditions $s^{\prime}(1)=2$ and $s^{\prime}(3)=-1$. Give the system of equations to be solved, solve it with Matlab and give the polynomials on each separate interval.
