
Numerical methods, midterm test II, (autumn 2017/18)
Solutions

1. Feladat. (2+2+2p) Let us consider the matrix A =

 20 1 1
1 −10 2
1 2 5

!

Show that the power method is applicable to this matrix. Execute one ite-
ration step with the method starting from the vector x0 = [100, 4, 7]T .
Give an estimate to the single dominant eigenvalue and the corresponding
eigenvector.

Solution: The matrix is symmetric. Based on the Gershgorin theorem,
the three real eigenvalues are in the intervals: [-13,-7], [2,8], [18,22]. Thus,
the eigenvalue with the largest absolute value is single indeed.

To execute one step, it is enough to calculate the product x1 = Ax0 =
[2011, 74, 143]T . This is already an estimation to the eigenvector that be-
longs to the dominant eigenvalue. The dominant eigenvalue can be appro-
ximated by the Rayleigh coefficient:
(xT1Ax1)/(x

T
1 x1) = 20.1091.

2. Feladat. (2+4+1p) We would like to compute the zero of the func-
tion f(x) = x− e−x in the interval [0, 2]. Show that the zero is unique. Let
us start with the bisection method and perform as many iteration steps
that is enough to start the Newton method from the new iteration point to
achieve monotone convergence to the zero of f . Execute one step with the
Newton method and give an upper estimate for the error after this step.

Solution: f ′(x) = 1 + e−x > 0, that is the function is strictly monotoni-
cally increasing on R. f(0) < 0 and f(2) > 0, that is the zero is unique in
[0,2]. f ′′(x) = −e−x < 0, thus the Newton method must be started from a
point where the function value is negative (these are from the zero to the
left). From this point the convergence will be monotone because the deri-
vatives do not change sign. Thus we have to continue the bisection method
until we arrive at a point where the function value is negative. Then we
can switch to the Newton method.

Bisection method: Starting interval [0,2], x0 = 1, f(x0) > 0. The new
interval [0,1], x1 = 1/2, f(x1) < 0, thus the Newton method can be started
here. One step with the Newton method: x2 = x1− f(x1)/f

′(x1) = 0.5663.
The distance |x2 − x?| can be estimated as

|x2 − x?| ≤
f(x2)

minx∈[x2,x?] |f ′(x)|
≤ f(x2)

1 + 1/e
= 9.5366× 10−4.

3. Feladat. (2+2+3p) Give the polynomial p(x) and the trigonometric
polynomial t(x) with the least degree possible that interpolate the points



(0, 1), (2π/3, 0), (4π/3, 0), (2π, 1). Give an upper estimate for the value
maxx∈[0,2π] |p(x)− t(x)|!

Solution: We have 4 points, thus we can fit a polynomial with degree at
most 3. This polynomial can be given for example by Largange’s method
(this is the simplest one).

p(x) = 1·(x− 2π/3)(x− 4π/3)(x− 2π)

(0− 2π/3)(0− 4π/3)(0− 2π)
+1· (x− 0)(x− 2π/3)(x− 4π/3)

(2π − 0)(2π − 2π/3)(2π − 4π/3)

(the other characteristic Lagrange polynomials are multiplied by zero, this
is why these terms do not appear in the above formula.)

When we fit a trigonometric polynomial, we must use only the first
three points (because of the 2π-periodicity). A first degree trigonometric
polynomial will do the job (the coefficients are calculated with the formula
we learnt): t(x) = 1/3 + 2 cos(x)/3.

The maximal difference of the two functions can be calculated after
noticing the fact that p(x) interpolates the function t(x) at the 4 given
nodes. We have to estimate the interpolation error with the choice n = 3
(we have 4 points, of which distance is h = 2π/3) and f(x) = t(x). By the
use of the error formula

max
x∈[0,2π]

|p(x)− t(x)| ≤ M4h
4

16
=

(2/3)(2π/3)4

16
= 0.8017.

Here M4 = 2/3 is an upper estimation for the absolute values of the fourth
derivative of t(x).

4. Feladat. (6p) We interpolate the points (0, 0), (1, 1), (2, 3) with a
natural cubic spline. We obtained the values d0 = 3/4, d1 = 3/2, d2 = 9/4
for the derivatives in the interpolation nodes! Give the expression of the
interpolating function in the interval [1, 2].

Solution: We use Hermite–Fejér interpolation:

s(x) = 1 +
3

2
(x− 1) +

1

2
(x− 1)2 − 1

4
(x− 1)2(x− 2).

5. Feladat. (3+4p) Let us approximate the integral
∫ 1

−1 e
x/
√

1− x2 dx
in two ways: with the composite midpoint rule using 4 subintervals and with
the two-point Gauss–Chebyshev quadrature (the weights are:
π/2, π/2)! (For your information: the exact integral is 3.9775.)

Solution: Let f(x) = ex and g(x) = ex/
√

1− x2. The integral can be
approximated by the composite midpoint rule as follows:

I ≈ 1/2 · (g(−3/4) + g(−1/4) + g(1/4) + g(3/4)) = 3.0226.



To compute the Gauss–Chebyshev approximation we need the two zeros
of the second degree Chebyshev polynomial. These are: c0 = −1/

√
2 and

c1 = 1/
√

2. Thus the approximation:

I ≈ (π/2) · (f(c0) + f(c1)) = 3.9603.

It is important that the first approximation uses the values of the func-
tion g, while in the second one we use f .

6. Feladat. (5+1+1p) We solve the initial value problem y′ = (1+x2)y,
y(0) = 1 using the implicit Euler method on the interval [0, 0.2]. Compute
the approximate solution value at the point x = 0.2 using the step-size
h = 0.1. Give the exact error of the approximation provided we know the
exact solution y(x) = exp(x + x3/3). Guess the error in the case we if we
used the step size h = 0.05.

Solution: The scheme of the implicit Euler method is yk+1 = yk +
hf(xk+1, yk+1). Let us apply it to the differential equation: yk+1 = yk +
h(1 + x2k+1)yk+1, thus we get

yk+1 =
yk

1− h(1 + x2k+1)
.

Using the initial value x0 = 0, y(0) = 1, and the step size h = 0.1 we get
y1 = y0/(1− 0.1(1 + 0.12)) = 1.1123, and similarly y2 = 1.2415. The error
at the endpoint of the interval is 0.0168. With the half of the original step
size we expect half the error, that is the error value 0.0084 (the actual error
is 0.0079).


