Problem 1. (6p)

We have plotted the graph of the function $f(x)=(1-\cos x) / x^{2}$ with Matlab on the interval $\left[-4 \times 10^{-8}, 4 \times 10^{-8}\right]$. The obtained graph can be seen in the figure. Let us explain the form of the graph and suggest a different form of the function that results in the correct graph. (Remember that $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$.)

Problem 2. (6p) Let us decide whether a linear system with the coefficient matrix A=-ones (6) $+10 *$ eye (6) (9 s in the diagonal, other elements are -1 s) can be solved by the following methods: a) Cholesky, b) Gauss, c) relaxed Jacobi with $\omega=1 / 2$, d) relaxed Gauss-Seidel with $\omega=3$, e) conjugate gradient method. (We may use the known fact that symmetric M-matrices are positive definite matrices.)

Problem 3. We solve the linear system $A x=b$, where A is the matrix from the previous problem and b is a random vector with elements between 0.5 and 1. The solution of the system is denoted by x_{1}. Then we modify the system as follows. We add 0.001 to each element of the matrix A and subtract 0.01 from each element of b. The solution of the new system is denoted by x_{2}. Give an upper estimation for the relative error $\left\|x_{1}-x_{2}\right\|_{\infty} /\left\|x_{1}\right\|_{\infty}$!

Problem 4. (7p) Let us give the LU and Cholesky decompositions of the matrix (if they exist) and compute the value of $\operatorname{det}(A)$

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 5 & 3 & 3 \\
1 & 3 & 6 & 4 \\
1 & 3 & 4 & 4
\end{array}\right]!
$$

Problem 5. (7p) Use the relaxed Jacobi method with relaxation parameter $1 / 2$ to

$$
6 x_{1}-x_{2}=1
$$

solve the linear system $-x_{1}+3 x_{2}-x_{3}=2 \quad$ Construct the iteration and estimate

$$
-x_{2}+2 x_{3}=1
$$

the number of iterations needed to approximate the exact solution of the system within the absolute error tolerance 10^{-6} in maximum norm. We start the iteration from the zero vector.

Problem 6. (7p) Somebody has carried out three iteration steps for the system $A x=$ b, where $\mathrm{A}=[1,0,1 ; 0,2,3 ; 1,3,10]$ and $\mathrm{b}=[0 ; 1 ; 0]$, either with the gradient method or with the conjugate gradient method. The obtained iteration vector is $x_{3}=[3 / 38,14 / 19,-3 / 20]^{T}$ and the residual is $r_{3}=[27 / 380,-9 / 380,-300 / 380]^{T}$. Let us decide which method was used and calculate the next iteration step.

Problem 1. (6p) Let us decide whether a linear system with the coefficient matrix A=-ones (6) $+11 *$ eye (6) (10 s in the diagonal, other elements are -1 s) can be solved by the following methods: a) Gauss, b) Cholesky, c) relaxed Gauss-Seidel with $\omega=4$, d) relaxed Jacobi with $\omega=1 / 3$, e) conjugate gradient method. (We may use the known fact that symmetric M-matrices are positive definite matrices.)

Problem 2. (6p)
We have plotted the graph of the function $f(x)=(\cos x-1) / x^{2}$ with Matlab on the interval $\left[-4 \times 10^{-8}, 4 \times 10^{-8}\right]$. The obtained graph can be seen in the figure. Let us explain the form of the graph and suggest a different form of the function that results in the correct graph. (Remember that $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$.)

Problem 3. (7p) We solve the linear system $A x=b$, where A is the matrix from Problem 1 and b is a random vector with elements between 0.3 and 1 . The solution of the system is denoted by x_{1}. Then we modify the system as follows. We subtract 0.01 from each element of the matrix A and add 0.001 to each element of b. The solution of the new system is denoted by x_{2}. Give an upper estimation for the relative error $\left\|x_{1}-x_{2}\right\|_{\infty} /\left\|x_{1}\right\|_{\infty}$!

Problem 4. (7p) Let us give the LU and Cholesky decompositions of the matrix (if they exist) and compute the value of $\operatorname{det}(A)$

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 5 & 3 & 3 \\
1 & 3 & 3 & 3 \\
1 & 3 & 3 & 7
\end{array}\right]!
$$

Problem 5. (7p) Use the relaxed Jacobi method with relaxation parameter $1 / 3$ to

$$
5 x_{1}-x_{2}=1
$$

solve the linear system $-x_{1}+4 x_{2}-x_{3}=3 \quad$ Construct the iteration and estimate

$$
-x_{2}+2 x_{3}=1
$$

the number of iterations needed to approximate the exact solution of the system within the absolute error tolerance 10^{-4} in maximum norm. We start the iteration from the zero vector.

Problem 6. (7p) Somebody has carried out three iteration steps for the system $A x=$ b, where $\mathrm{A}=[1,0,1 ; 0,2,2 ; 1,2,10]$ and $\mathrm{b}=[0 ; 1 ; 0]$, either with the gradient method or with the conjugate gradient method. The obtained iteration vector is $x_{3}=[1 / 18,11 / 18,-1 / 10]^{T}$ and the residual is $r_{3}=[2 / 45,-1 / 45,-5 / 18]^{T}$. Let us decide which method was used and calculate the next iteration step.

