
Numerical methods, midterm test I (2018/19 autumn, group A)
Solutions

Problem 1. (6p) We are going to approximate the limit lim
x→1

x3/2 − x√
x− 1

by substituting x = 0.99 into the fraction in the present form. We use a calculator that
uses a decimal number system with 2-digit-long mantissa (there is no restriction to the
characteristic). Calculate the value of the fraction, explain the result, and give a better
way of the calculation.

Solution: We round after each operation: fl(0.993/2) = fl(0.985037) = 0.99, thus the
numerator is 0. In the denominator we have fl(

√
0.99) = fl(0.994987) = 0.99, thus the

value of the denominator is -0.01. The value of the fraction is 0.
We can reformulate the fraction as follows

x3/2 − x√
x− 1

=
x(
√
x− 1)√
x− 1

= x,

which gives 0.99 on the given calculator. This value is much closer to the exact limit 1.
The previous result was inaccurate due to the finite precision and cancellation.

Problem 2. (6p) Let us consider the two linear systems

a)

[
6 1
1 8

]
x =

[
1
2

]
, b)

[
6 7
7 8

]
x =

[
1
2

]
.

Which of the two systems is the most sensitive to the change of the coefficients? For that
system, give an upper bound for the change of the solution of the system in 1-norm in
the case when we add real numbers that are not greater than 0.02 in absolute value to
each element of the coefficient matrix and to the right-hand-side vector.

Solution: We must compute the condition numbers of the two coefficient matrices. The
inverse of a matrix [

a b
b c

]
has the form

1

ac− b2

[
c −b
−b a

]
.

Thus the condition number of the first matrix (in maximum or 1-norm) is 81/47, and of
the second one 225. The most sensitive equation is the second one.

The upper bound for the change of the solution can be given using the formula

‖δx‖1
‖x‖1

≤ κ1(A)

1− κ1(A)‖δA‖1/‖A‖1

(
‖δA‖1
‖A‖1

+
‖δb‖1
‖b‖1

)
=

225

1− 225 · 0.04/15

(
0.04

15
+

0.04

3

)
= 9.

Thus, the relative change cannot be greater than 900%.

Problem 3. (7p) Show that if A is an M-matrix then the matrix C = (1/ω)D −R
is also an M-matrix for all ω ∈ (0, 1] (here A = D − L − R is the usual splittig of A
in the iterative methods). Show that if g is a majorizing vector of A then it is valid the
estimation

‖C−1‖∞ ≤
‖g‖∞

mini(Ag)i
.

Solution: Because A is an M matrix, L + R ≥ 0 (offdiagonal is nonpositive), D > 0
and there exists a majorizing vector g > 0 such that Ag > 0.



The offdiagonal of C is trivially nonpositive, because these elements are the offdiagonal
elements of A as well.

We show that the majorizing vector g of A majorizes also C.

Cg = ((1/ω)D−R)g ≥ (D−R)g ≥ (D−R− L)g = Ag > 0.

Because g majorizes C and due to the above estimation we have

‖C−1‖∞ ≤
‖g‖∞

mini(Cg)i
≤ ‖g‖∞

mini(Ag)i
.

Problem 4. (7p) The upper triangular matrix of the Cholesky decomposition of a
matrix A has the form

F =


1 1 1 2
0 1 1 1
0 0 1 1
0 0 0 1

 .
Compute the determinant of A, give the LU decomposition of A and the solution of the
system Ax = [3, 4, 5, 9]T . Decide whether we can use the relaxed Gauss–Seidel method
with relaxation parameter ω = 1.9 to solve this system.

Solution: A has the Cholesky factorization in the form A = FTF. det(A) = det(FT )det(F) =
1, moreover now the Cholesky factorization is an LU factorization too (because the LU
factorization is unique if det(A) 6= 0). The system can be solved using two simple back-
substitutions: first we solve FTy = [3, 4, 5, 9]T , we get y = [3, 1, 1, 1]T . Then we solve
Fx = y. We get the solution of the system in the form x = [1, 0, 0, 1]T . The relaxed
Gauss–Seidel method works for symmetric positive definite systems with ω parameter
from (0,2). Thus, the method is applicable to the present system.

Problem 5. (7p) Use the Jacobi method to solve the linear system

6x1 − x2 = 1

−x1 + 3x2 − x3 = 2

−x2 + 2x3 = 1.
Construct the iteration and estimate the number of iterations needed to approximate the
exact solution of the system within the absolute error tolerance 10−6 in 1-norm. We start
the iteration from the zero vector.

Solution: The Jacobi method has the iteration

xk+1 = Bxk + f =

 0 1/6 0
1/3 0 1/3
0 1/2 0

xk +

1/6
2/3
1/2

 .
Because ‖B‖1 = 2/3 and x1 = f , it is valid the estimation

‖xk − x?‖1 ≤
(2/3)k

1− 2/3
· 4/3 ≤ 10−6,

that shows that 38 iterations are enough to achieve the required error tolerance.

Problem 6. (7p) We are going to give the QR decomposition of the matrix
A =


0 1
1 1

0
√

3
0 0


using Householder reflections. The first Householder reflection, which belongs to the first



column, is the matrix
H1 =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 . Give the QR decomposition of A

and solve the over-determined system Ax = [0, 0, 1, 1]T by the use of the QR decompo-
sition.

Solution: The second Householder matrix has the form

H2 =


1 0 0 0

0 −1/2
√

3/2 0

0
√

3/2 1/2 0
0 0 0 1

 ,
and

R = H2H1A =


−1 −1
0 2
0 0
0 0

 .

Q = H1H2 =


0 1/2 −

√
3/2 0

−1 0 0 0

0
√

3/2 1/2 0
0 0 0 1

 .
Because QTb = [0,

√
3/2, ?, ?]T , to compute the xLS solution, we have to solve the system[

−1 −1
0 2

]
x =

[
0√
3/2

]
.

By back-substitution we obtain that xLS = [−
√

3/4,
√

3/4]T .



Numerical methods, midterm test I (2018/19 autumn, group B)
Solutions

Problem 1. (6p) We are going to approximate the limit lim
x→1

x− x3/2

1−
√
x

by substituting x = 0.999 into the fraction in the present form. We use a calculator that
uses a decimal number system with 3-digit-long mantissa (there is no restriction to the
characteristic). Calculate the value of the fraction, explain the result, and give a better
way of the calculation.

Solution: We round after each operation: fl(0.9993/2) = fl(0.99850037) = 0.999, thus
the numerator is 0. In the denominator we have fl(

√
0.999) = fl(0.99949987) = 0.999,

thus the value of the denominator is 0.001. The value of the fraction is 0.
We can reformulate the fraction as follows

x− x3/2

1−
√
x

=
x(1−

√
x)

1−
√
x

= x,

which gives 0.999 on the given calculator. This value is much closer to the exact limit 1.
The previous result was inaccurate due to the finite precision and cancellation.

Problem 2. (6p) Let us consider the two linear systems

a)

[
7 6
6 5

]
x =

[
2
1

]
, b)

[
7 1
1 5

]
x =

[
2
1

]
.

Which of the two systems is the most sensitive to the change of the coefficients? For that
system, give an upper bound for the change of the solution of the system in 1-norm in
the case when we add real numbers that are not greater than 0.01 in absolute value to
each element of the coefficient matrix and to the right-hand-side vector.

Solution: We must compute the condition numbers of the two coefficient matrices. The
inverse of a matrix [

a b
b c

]
has the form

1

ac− b2

[
c −b
−b a

]
.

Thus condition number of the first matrix (in maximum or 1-norm) is 169, and of the
second one 64/34. The most sensitive equation is the first one.

The upper bound for the change of the solution can be given using the formula

‖δx‖1
‖x‖1

≤ κ1(A)

1− κ1(A)‖δA‖1/‖A‖1

(
‖δA‖1
‖A‖1

+
‖δb‖1
‖b‖1

)
=

169

1− 169 · 0.02/13

(
0.02

13
+

0.02

3

)
= 1.87.

Thus, the relative change cannot be greater than 187%.

Problem 3. (7p) Show that if A is an M-matrix then the matrix B = (1/ω)D − L
is also an M-matrix for all ω ∈ (0, 1] (here A = D − L − R is the usual splittig of A
in the iterative methods). Show that if g is a majorizing vector of A then it is valid the
estimation

‖B−1‖∞ ≤
‖g‖∞

mini(Ag)i
.

Solution: Because A is an M matrix, L + R ≥ 0 (offdiagonal is nonpositive), D > 0
and there exists a majorizing vector g > 0 such that Ag > 0.



The offdiagonal of B is trivially nonpositive, because these elements are the offdiagonal
elements of A as well.

We show that the majorizing vector g of A majorizes also B.

Bg = ((1/ω)D− L)g ≥ (D− L)g ≥ (D− L−R)g = Ag > 0.

Because g majorizes B and due to the above estimation we have

‖B−1‖∞ ≤
‖g‖∞

mini(Bg)i
≤ ‖g‖∞

mini(Ag)i
.

Problem 4. (7p) The upper triangular matrix of the Cholesky decomposition of a
matrix A has the form

F =


1 1 1 1
0 1 1 2
0 0 1 1
0 0 0 1

 .
Compute the determinant of A, give the LU decomposition of A and the solution of the
system Ax = [2, 3, 3, 4]T . Decide whether we can use the relaxed Gauss–Seidel method
with relaxation parameter ω = 0.1 to solve this system.

Solution: A has the Cholesky factorization in the form A = FTF. det(A) = det(FT )det(F) =
1, moreover now the Cholesky factorization is an LU factorization too (because the LU
factorization is unique if det(A) 6= 0). The system can be solved using two simple back-
substitutions: first we solve FTy = [2, 3, 3, 4]T , we get y = [2, 1, 0, 0]T . Then we solve
Fx = y. We get the solution of the system in the form x = [1, 1, 0, 0]T . The relaxed
Gauss–Seidel method works for symmetric positive definite systems with ω parameter
from (0,2). Thus the method is applicable to the present system.

Problem 5. (7p) Use the Jacobi method to solve the linear system

5x1 − x2 = 1

−x1 + 4x2 − x3 = 3

−x2 + 2x3 = 1.
Construct the iteration and estimate the number of iterations needed to approximate the
exact solution of the system within the absolute error tolerance 10−4 in 1-norm. We start
the iteration from the zero vector.

Solution: The Jacobi method has the iteration

xk+1 = Bxk + f =

 0 1/5 0
1/4 0 1/4
0 1/2 0

xk +

1/5
3/4
1/2

 .
Because ‖B‖1 = 7/10 and x1 = f , it is valid the estimation

‖xk − x?‖1 ≤
(7/10)k

1− 7/10
· 29/20 ≤ 10−4,

that shows that 31 iterations are enough to achieve the required error tolerance.

Problem 6. (7p) We are going to give the QR decomposition of the matrix
A =


0
√

3
0 1
1 1
0 0


using Householder reflections. The first Householder reflection, which belongs to the first



column, is the matrix
H1 =


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 . Give the QR decomposition of A

and solve the over-determined system Ax = [1, 0, 0, 1]T by the use of the QR decompo-
sition.

Solution: The second Householder matrix has the form

H2 =


1 0 0 0

0 −1/2
√

3/2 0

0
√

3/2 1/2 0
0 0 0 1

 ,
and

R = H2H1A =


−1 −1
0 −2
0 0
0 0

 .

Q = H1H2 =


0 −

√
3/2 −1/2 0

0 −1/2
√

3/2 0
−1 0 0 0
0 0 0 1

 .
Because QTb = [0,−

√
3/2, ?, ?]T , to compute the xLS solution, we have to solve the

system [
−1 −1
0 −2

]
x =

[
0

−
√

3/2

]
.

By back-substitution we obtain that xLS = [−
√

3/4,
√

3/4]T .


