Numerical methods, midterm test I (2017/18. autumn semester

1. (6p) Let $\|$.$\| denote an arbitrary vector norm or the matrix norm induced by this$ vector norm. Prove the following statement for a quadratic matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$: If there exists a number $\alpha>0$ such that $\|\mathbf{A} \overline{\mathbf{x}}\| \geq \alpha\|\overline{\mathbf{x}}\|$ for all vectors $\overline{\mathbf{x}} \in \mathbb{R}^{n}$, then \mathbf{A} is nonsingular and the estimate $\left\|\mathbf{A}^{-1}\right\| \leq 1 / \alpha$ is valid!
2. (6p) We would like to compute the value $f(x)=e^{x}-x-1$ for $x_{0}=0.0005$ as accurately as we can. We use a computer that uses decimal numbers with 8-digitlong mantissas. Let us apply first the approximation $e^{0.0005} \approx 1.0005001$! Give a better approximation of $f\left(x_{0}\right)$ on the same computer!
3. Show that if M is an M-matrix, then $\mathbf{A D}$ is also an M-matrix for all diagonal matrices \mathbf{D} with positive diagonal. Using this statement, give an upper estimation for the maximum norm of the inverse of the matrix

$$
\mathbf{B}=\left[\begin{array}{ccc}
9 & -1 & 0 \\
-3 & 3 & -3 \\
0 & -1 & 9
\end{array}\right]=\left[\begin{array}{ccc}
3 \cdot 3 & -1 & 3 \cdot 0 \\
3 \cdot(-1) & 3 & 3 \cdot(-1) \\
3 \cdot 0 & -1 & 3 \cdot 3
\end{array}\right]
$$

4. We would like to solve the linear system $\mathbf{A} \overline{\mathbf{x}}=\overline{\mathbf{b}}$, where $\mathbf{A} \in \mathbb{R}^{5 \times 5}$ and $\overline{\mathbf{b}}=$ $[1,2,3,4,5]^{T}$. We know that $\left\|\mathbf{A}^{-1}\right\|_{\infty}=4$ and that the LU decomposition of \mathbf{A} has the concise form

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 1 & 2
\end{array}\right] .
$$

Compute the solution $\overline{\mathbf{x}}$ of the system. How much would the solution change in maximum norm if we changed the vector $\overline{\mathbf{b}}$ to the vector $\overline{\mathbf{b}}^{\prime}=[0.99,1.99,3.05,4.02,5.1]^{T}$? (Hint: Do not compute matrix \mathbf{A} explicitly! Let us estimate the unknown quantities.)

$$
5 x_{1}-x_{2}=7
$$

5. We solve system $\quad-x_{1}+3 x_{2}-x_{3}=4$

$$
-x_{2}+2 x_{3}=5
$$

with an iterative solver. Show that the Gauss-Seidel method is applicable to this system. We start the iteration from the vector $\overline{\mathbf{x}}^{(0)}=[0,0,0]^{T}$, and we get the vector $\overline{\mathbf{x}}^{(1)}=[1.4000,1.8000,3.4000]^{T}$ in the first step (rounded to 4 decimal places). How many iterations does the iteration need to approximate the solution with a maximum error of 5×10^{-6} in 1-norm (the inverse of a lower triangular matrix is lower triangular!).
6. (7p) Give the QR decomposition of the matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & -4 \\
0 & 0 \\
-5 & -2
\end{array}\right]
$$

(it is enough to use two Givens rotations)!

