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A simple example

CN method:

yk+1 = yk +
h

2
(f(xk,yk) + f(xk+1,yk+1)).

This method is an implicit one. If h ≤ 2/L (L is the Lipschitz constant), then the
equation has a unique solution for yk+1. yk+1 can be computed by fixed point
iteration:

y
(s+1)
k+1 = yk +

h

2
(f(xk,yk) + f(xk+1,y

(s)
k+1)).

Problems:

I When to stop the iteration?

I f(x,y) must be computed many times.

I What is a good choice for y
(0)
k+1?
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A simple example

Solution: Let us apply an explicit method to obtain a good guess for y
(0)
k+1.

For example, we can use the explicit Euler method. That is we set

y
(0)
k+1 = yk + hf(xk,yk).

Iterating only once we obtain the method

yk+1 = yk +
h

2
(f(xk,yk) + f(xk+1,yk + hf(xk,yk)),

which is an explicit method.

Advantage of this technique: What is the order of this method? The EE method is
first order, the CN method is second order, but the combined method above is second
order. This is the Heun method (b = 1/2), which is second order indeed.
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The idea of predictor-corrector methods

The application of an explicit and an implicit method after each other.

I Predictor: An explicit method that predicts a good starting value for the
iteration in the case of an implicit method.

I Corrector: The applied implicit method, with which we correct the value of yk+1.
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Multistep methods
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General form of s-step methods

asyk+1 + as−1yk + . . .+ a0yk−(s−1)

= h(bs fk+1︸︷︷︸
f(xk+1,yk+1)

+bs−1 fk︸︷︷︸
f(xk,yk)

+ . . .+ b0 fk−(s−1))︸ ︷︷ ︸
f(xk−(s−1),yk−(s−1))

I as 6= 0, because it is used to calculate yk+1.

I If bs = 0, then the method is explicit, otherwise it is implicit.

I To start the method we need the values y0, . . . , ys−1. These can be calculated
with a sufficiently accurate one-step method (e.g. with some RK methods).
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Adams methods

If as = 1, as−1 = −1 and ak = 0 (k = s− 2, . . . , 0), then the method is called Adams
method. The explicit Adams methods are called Adams-Bashforth methods (John
Couch Adams (1819 - 1892, English), astronomer, mathematician; Francis Bashforth
(1819 - 1912, English), mathematician), and the implicit ones Adams-Moulton
methods (Forest Ray Moulton (1872 - 1952, USA), astronomer).
Construction: ∫ xk+1

xk

y′(x) dx =

∫ xk+1

xk

f(x, y(x)) dx

yk+1 − yk =

∫ xk+1

xk

k(AB), k+1(AM)∑
j=k−s+1

f(xj , yj)︸ ︷︷ ︸
fj

lj(x) dx,

=

k(AB), k+1(AM)∑
j=k−s+1

fj

∫ xk+1

xk

lj(x) dx

where lj (j = k − s+ 1, . . . , k(AB), k + 1(AM)) is the jth characteristic Lagrange
polynomial to the points xk−s+1, . . . , xk(AB), xk+1(AM).
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Adams methods

The maximal order Adams–Bashforth formulas:

Steps Formula Order

1 yk+1 = yk + hfk (EE) 1

2 yk+1 = yk + h
2

(3fk − fk−1) 2

3 yk+1 = yk + h
12

(23fk − 16fk−1 + 5fk−2) 3

4 yk+1 = yk + h
24

(55fk − 59fk−1 + 37fk−2 − 9fk−3) 4

5 yk+1 = yk + h
720

(1901fk − 2774fk−1 + 2616fk−2 − 1274fk−3 + 251fk−4) 5

The maximal order Adams–Moulton formulas:

Steps Formula Order

1 yk+1 = yk + hfk+1 (IE) 1

1 yk+1 = yk + h
2

(fk+1 + fk) (CN) 2

2 yk+1 = yk + h
12

(5fk+1 + 8fk − fk−1) 3

3 yk+1 = yk + h
24

(9fk+1 + 19fk − 5fk−1 + fk−2) 4

4 yk+1 = yk + h
720

(251fk+1 + 646fk − 264fk−1 + 106fk−2 − 19fk−3) 5
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Backward differentiation formulas (BDF)

If bs = 1 and bk = 0 (k = s− 1, . . . , 0), then the method is called backward
differentiation formula - BDF.

Construction:

We start with the differential equation at the point xk+1

y′(xk+1) = f(xk+1, y(xk+1)).

The right hand side is approximated by f(xk+1, yk+1) = fk+1, and on the left hand
side we apply a backward difference formula.

The maximal order BDF methods:

Steps Formula Order

1 (IE) yk+1 − yk = hfk+1 1

2 3
2
yk+1 − 2yk + 1

2
yk−1 = hfk+1 2

3 11
6
yk+1 − 3yk + 3

2
yk−1 − 1

3
yk−2 = hfk+1 3

4 25
12
yk+1 − 4yk + 3yk−1 − 4

3
yk−2 + 1

4
yk−3 = hfk+1 4

5 137
60
yk+1 − 5yk + 5yk−1 − 10

3
yk−2 + 5

4
yk−3 − 1

5
yk−4 = hfk+1 5
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Consistency

We calculate h·LTE (let we develop the Taylor expansion at z = xk−s+1):

h · LTE =asy(xk+1) + . . .+ a0y(xk−s+1)

− h(bsf(xk+1, y(xk+1)) + . . .+ b0f(xk−s+1, y(xk−s+1))) =

=

s∑
i=0

aiy(z + ih)− hbi f(z + ih, y(z + ih))︸ ︷︷ ︸
y′(z+ih)


=

s∑
i=0

ai(y(z) + y′(z)ih+ y′′(z)(ih)2/2 + . . .)

− h
s∑
i=0

bi(y
′(z) + y′′(z)ih+ y′′′(z)(ih)2/2 + . . .)

=d0y(z) + d1y
′(z)h+ d2y

′′(z)h2 + . . . ,
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Consistency

where

d0 =

s∑
i=0

ai

d1 =

s∑
i=0

(iai − bi)

...

dj =

s∑
i=0

(
ijai
j!
− ij−1bi

(j − 1)!

)
...

Thus we have

LTE = d0y(z)
1

h
+ d1y

′(z) + d2y
′′(z)h+ d3y

′′′(z)h2 + . . . .
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Consistency

From the form of the local truncation error it follows the following result directly.

Thm. 148. The multistep method is consistent iff d0 = d1 = 0. If the solution y is
in Cm+1 and

d0 = . . . = dm = 0 (m ≥ 1)

and
dm+1 6= 0,

then the local truncation error is O(hm), thus the consistency order of the method
is m.

Example. The AB5 and AM4 methods have consistency order 5.

Example. The method yk+1 − yk−1 = h
3 (fk+1 + 4fk + fk−1) has consistency order 4.

a2 = 1, a1 = 0, a0 = −1, b2 = 1/3, b1 = 4/3, b0 = 1/3. Thus d0 = . . . = d4 = 0 és
d5 = −1/90.
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Consistency

What is the maximal achievable consistency order?

The method has 2s+ 1 free coefficients (because the coefficients are unique only up to
a nonzero constant multiplier). There is some hope that we can choose the coefficients
in such a way that d0 = . . . = d2s = 0 (2s+ 1 equations and 2s+ 1 unknowns).

Theorem
(Dahlquist (1956)) The system of equations d0 = . . . = d2s = 0 has always a solution
up to a nonzero constant multiplier. Thus, with an s-step method, we can achieve a
consistency order as high as 2s. (For explicit methods, the achievable highest order is
2s− 1 (bs must be zero). For AB methods: s, and for AM methods: s+ 1.)

Germund Dahlquist, 1925-2005, Swedish
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Stability

Def. 150. An s-step method is called to be (zero)stable if there are two constants
K > 0 and h0 > 0 independent of the step size such that for 0 < h < h0 we have

|yk − ŷk| ≤ K max{|y0 − ŷ0|, . . . , |ys−1 − ŷs−1|}, k = s, . . . , Nh,

that is starting the scheme from two different sets of initial values, the difference of
the solutions remains bounded on finite intervals. (ŷk is the sequence produced
with the hatted values.)

Thm. 151. An s-step method is stable iff all zeros of the so-called first
characteristic polynomial ζ(z) = asz

s + . . .+ a1z + a0 lie in the closed complex
unit circle centered at the origin and the zeros on the boundary are sigle.
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Convergence

Thm. 152. (Equivalence theorem) Let us suppose that the solution of the initial
value problem is in Cr+1, moreover, let us suppose that the multistep method has
consistency order r. Then the stability is a necessary and sufficient condition of
the convergence. The order of the convergence is r.

Example.
EE, IE: ζ(z) = z − 1, thus the methods are stable, they are also consistent (order is 1),
and these imply that they are convergent with order 1.

Theorem
The Adams methods are convergent and their convergence order equals the order of
their consistency.

Proof: ζ(z) = zs − zs−1 = zs−1(z − 1). Thus, the method is always stable. The other
part of the theorem follows from the equivalence theorem.
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Stability

Theorem
There are valid the following so-called Dahlquist’s (first and second) barriers (indicated
by blue and extended by some previously discussed results).

s: number of steps of the method Impicit Explicit

The greatest possible consistency order 2s 2s− 1
The greatest possible consistency order of a stable method s+ 1 (s odd) s

s+ 2 (s even)
The greatest possible order of an A-stable method 2 -
The greatest possible order of a convergent Adams method s+ 1 (AM) s (AB)
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A not stable method

yn+1 + 4yn − 5yn−1 = h(4fn + 2fn−1)

This 2-step method is explicit and third order, thus it cannot be stable. This can be
verified on the test equation y′ = 0, y(0) = 0.

Then for y0 = 0 and y1 = εh we have

yn = (1− (−5)n)εh/6.

The numerical solution at x = 1 is (n = 1/h)

(1− (−5)1/h)εh/6.

With the choice y0 = 0 and y1 = 0 we obtain zero. This shows that the method
cannot be stable.
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Solution of boundary value problems
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Solution of boundary value problems

Initial value problems: The values of all the unknown functions are known at the
same fixed point.

Boundary value problems: The values of the unknown functions are known at more
different points (generally at the two ends of an interval).

Example. The equation of the deflection of a rod:

EIy′′(x) + P cos(y(x)) = 0, y(0) = 0, y(L) = 0.

⇓

y′1 = y2, y1(0) = y1(L) = 0,

y′2 = − P

EI
cos(y1).
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Boundary value problems

Let us consider the two-point boundary value problems in the form

y′′ = f(x, y, y′), y(a) = A, y(b) = B,

where a < b and x ∈ [a, b].

Theorem
Assume that f is continuous, the derivative with respect to the second argument is
continuous and positive, the derivative with respect to the third argument is
continuous and bounded. Then the boundary value problem has a unique solution.

Example. The problem y′′ = −y, y(0) = 3, y(π) = 7 has no solution.
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Shooting method
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Shooting (garden hose) method

Let us rewrite the problem to an initial values problem

y′1 = y2, y1(a) = y(a) = A,

y′2 = f(x, y1, y2), y2(a) = y′(a) =: D,

where we have replaced the unknown value y2(a) = y′(a) by a fixed real number D.

Let us denote the solution of the above problem by y(x;D). If y(b;D) = B, then
y(x;D) solves the original boundary value problem. Otherwise, we choose another
value D. This can be done in a systematic way.
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Shooting method

We have to solve the nonlinear equation

y(b;D)−B = 0

for the parameter D.

We can use the previously studied methods to find the appropriate D.

I Bisection method,

I Newton’s method.
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Finite difference method
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Finite difference method (matrix method)

y′′ = f(x, y, y′), y(a) = A, y(b) = B

Let us define an equidistant mesh on [a, b]. Let the length of the subintervals be
h = (b− a)/(n+ 1), thus xi = a+ ih (i = 0, . . . , n+ 1).

Let yi denote (i = 0, . . . , n+ 1) the approximations of the exact solution at xi. Let us
replace the derivatives of the solution to finite difference approximations:

yi−1 − 2yi + yi+1

h2
= f

(
xi, yi,

yi+1 − yi−1

2h

)
,

moreover let y0 = A and yn+1 = B. If f is nonlinear, then the solution is difficult. We
must use one of the solvers for nonlinear systems of equations (Newton’s method, fixed
point iteration).
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Finite difference method

Let us investigate only linear equations, that is the boundary value problems in the
form:

y′′(x) = u(x) + v(x)y + w(x)y′, y(a) = A, y(b) = B

Then the finite difference method results in the problem (u(xi) = ui, v(xi) = vi,
w(xi) = wi):

yi−1 − 2yi + yi+1

h2
= ui + viyi + wi

yi+1 − yi−1

2h
, (6)

moreover y0 = A and yn+1 = B. After rearrangement we obtain

y0 = A,

ai︷ ︸︸ ︷(
1

h2
+
wi
2h

)
yi−1

bi︷ ︸︸ ︷
−
(

2

h2
+ vi

)
yi +

ci︷ ︸︸ ︷(
1

h2
− wi

2h

)
yi+1 = ui

yn+1 = B,
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Finite difference method

In order to obtain the approximations yi, we have to solve the linear system:
b1 c1

a2 b2 c2

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn




y1

y2
...

yn−1

yn

 =


u1 − a1A

u2
...

un−1

un − cnB

 .

Assume that inf v > 0 and w 6≡ 0 is a bounded function on [a, b]. Moreover, let us
assume that the step size h is sufficiently small, that is h ≤ 2/ supx∈[a,b]{|w(x)|}.

Then the matrix is strictly diagonally dominant, that implies that the system can be
solved using the Gaussian elimination.
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Convergence

Def. 156. The previous scheme for the solution of the boundary value problem is
convergent if maxi=1,...,n |yi − y(xi)| = O(hr) (r ≥ 0) provided that h→ 0
(n→∞), moreover r is the order of the convergence.

Theorem
If y ∈ C4 then the investigated scheme is convergent with convergence order 2.

Proof. Let us compute first the LTE at the point xi:

τi =
y(xi−1)− 2y(xi) + y(xi+1)

h2
− ui − viy(xi)− wi

y(xi+1)− y(xi−1)

2h

=
h2

12
y′′′′(ξ)− wi

h2

6
y′′′(η).

That is with a positive constant C we have

|τi| ≤ h2M3C.

Thus the method is consistent and the order of the consistency is 2.
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Convergence

Let us subtract the scheme (6) from the inequility obtained for the LTE. Let us
intruduce the notation ei = y(xi)− yi for the error at the point xi. We obtain the
linear system of equations:

ei−1 − 2ei + ei+1

h2
− viei − wi

ei+1 − ei−1

2h
= τi,

that is componentwisely
b1 c1

a2 b2 c2

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn




e1

e2
...

en−1

en

 =


τ1

τ2
...

τn−1

τn

 .
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Convergence

The matrix of the system is the -1 multiple of an M-matrix. The main diagonal is
negative, the other elements are nonnegative, and the main diagonal is strictly
dominant. We can apply the estimation for the inverses of M-matrices. Together with
the expression for the LTE τi, we obtain that∥∥∥∥∥∥∥∥∥∥∥


e1

e2
...

en−1

en



∥∥∥∥∥∥∥∥∥∥∥
∞

≤ 1

infx∈[a,b] v(x)

∥∥∥∥∥∥∥∥∥∥∥


τ1

τ2
...

τn−1

τn



∥∥∥∥∥∥∥∥∥∥∥
∞

≤ M3h
2C

infx∈[a,b] v(x)
.

This shows second order convergence.
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