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Course description

I Contact: e-mail: rhorvath@math.bme.hu, Office: H.24/b

I Course webpage: anal.math.bme.hu/nummeth

I Consultations: office hours: Thursdays 16-17, or by appointment via e-mail

I Course requirements: see the course webpage.

I Lecture notes:
- slides of the lecture
- assignments for homework
- Books:
Steven C. Chapra, Applied Numerical Methods with MATLAB - for engineers and
scientists, McGraw Hill, 2008
W. Cheney, D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole,
Cangage learning, 2013
- Catch up with Matlab:
https://www.mathworks.com/moler/chapters.html

https://web.stanford.edu/class/ee254/software/using_ml.pdf

- other readings in Hungarian (listed in the Course requirements)

4 / 245

https://www.mathworks.com/moler/chapters.html
https://web.stanford.edu/class/ee254/software/using_ml.pdf


Introduction to numerical analysis

5 / 245



Introduction

”Numerical analysis is the study of algorithms for the problems of continuous
mathematics.” (Lloyd N. Trefethen, 1992)

It constructs algorithms and analyses them from the point of view of accuracy,
efficiency and its behavior during computer realization.

Problems of continuous mathematics come from different disciplines. They are the
mathematical models of e.g. physical, biological, chemical or economical problems.
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Introduction

Model construction:

The real problem
↓

Scientific model
↓

Mathematical model
↓

Numerical model
↓

Computer model
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Example of the pendulum motion

Problem: Compute the period
of a pendulum.

Sci. mod.: Neglect the
weight of the string and the
drag. Apply the energy
conservation principle:
1
2ml

2(φ′(t))2 +mgl(1−
cosφ(t)) = mgl(1− cosα).

Math. mod.: The differential equation for the angular velocity:

φ′(t) = ±
√

2g

l

√
cosφ(t)− cosα

The period must be computed from this equation.
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Example of the pendulum motion

∫ T/4

0

φ′(t)

−
√

2g
l

√
cosφ(t)− cosα

dt = T/4.

Changing the variable:

T = 2
√

2

√
l

g

∫ α

0

1√
cosφ− cosα

dφ

= 4

√
l

g

∫ π/2

0

1√
1− sin2(α/2) sin2 ϑ

dϑ.

The value of the integral cannot be given in closed form (sinϑ = sin(φ/2)/ sin(α/2)).

Num. mod.: Let us use numerical integration formulas (see later).

Comp. mod.: l = 1m, g = 9.8m/s2

T = 2.008035541s (α = 5◦), T = 2.369049722s (α = 90◦).
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Example of the pendulum motion

Other approach: Let us develop the Taylor series of the function 1/
√

1− x about
x = 0, and let us apply the series at the point sin2(α/2) sin2 ϑ, then let us integrate
the formula:

T = 2π

√
l

g

(
1 +

1

4
sin2 α

2
+ . . .

)
.

If we suppose that the initial angular displacement is small, then we obtain the period
formula

T ≈ 2π

√
l

g
.

This is independent of α. In the example we obtain T = 2.007089923s.
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History of numerical analysis

Babylonian stone plate, 1800-1600 B.C.

I Approximation methods were already used in the ancient time (approximation of
irrational numbers, interpolation, approximate solution of equations, etc.).

I Some important names:

Newton (approximate solutions of equations, numerical integration, end of
1600s)
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History of numerical analysis

Euler (solution of ODEs, 1700s)

Lagrange (interpolation methods, 1700s)

Gauss (numerical integration, solution of SLAEs, 1800s)
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Introduction

I Construction of approximate tables.

I Computer (from the middle of the 20th century)

I 1947: The advent of the modern numerical mathematics. Rounding errors and
other scientific considerations.
John von Neumann, Herman Goldstine, Numerical Inverting of Matrices of High
Order, Bulletin of the AMS, Nov. 1947.

J. Neumann, 1903-1957, Hungarian
H. Goldstine, 1913-2004, USA
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Basic concepts of numerical analysis
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Properly posed problems
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Properly posed problems

F (x, d) = 0 (1)

Problem: It is given the data d. Find the solution x. d and x are the elements of some
normed spaces and F is an arbitrary function.

Def. 1. (Hadamard, 1902) A problem is a properly posed problem if ∃η > 0 such
that the problem has a unique solution (xd+δd) for all d+ δd with the property
‖δd‖ ≤ η, and ∃K(η, d) > 0 such that ‖xd+δd − xd‖ ≤ K(η, d)‖δd‖ (the solution
depends continuously on the data d).

Example. A simple problem that is not properly posed:
x− |{a ∈ R | a2 + a+ d/4 = 0}| = 0, if d = 1.

If δd < 0 then we have x = 2,
if δd = 0 then we have x = 1, and
if δd > 0 then we have x = 0.
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Properly posed problems

Example. A properly posed problem: Consider the system of linear equations with the
data d and with the solution x = [x1, x2]

T

dx1 + x2 = 1

x1 + x2 = 0.

Let us choose d = 0. In this case the solution is x0 = [−1, 1]T .

From the general solution of the system we have

x0+δd =

[
1

δd− 1
,
−1

δd− 1

]T
.

The solution is e.g. for |δd| ≤ 1/2 =: η. Moreover in this case we have

‖x0+δd − x0‖ ≤
√

2

∣∣∣∣ 1

δd− 1
− 1

0− 1

∣∣∣∣ =
√

2

∣∣∣∣ δd

δd− 1

∣∣∣∣ =
√

2

∣∣∣∣δd− 0

δd− 1

∣∣∣∣ ≤ 2
√

2 |δd− 0|

thus K(η, d) = 2
√

2 is a good choice (in Euclidean distance).
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Properly posed problems

Example. Let us consider the system below, where d is the data and the solution is
x = [x1, x2]

T . Let d = 5, then the solution is x = [331.7, 5]T . It can be checked easily
that the problem is properly posed.

dx1 − 331x2 = 3.5
6x1 − 397x2 = 5.2

(2)

Let us change the value of d to 4.9 (2%):

4.9x1 − 331x2 = 3.5
6x1 − 397x2 = 5.2.

In this case the solution is x = [8.1499, 0.1101]T (98%).

The problem is properly posed but, because K(η, d) is large, the solution can change
very much.
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Conditioning of a problem, condition number
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Condition numbers, conditioning

Let D be the set of allowable perturbations δd in the problem (1).

Def. 2. The number

κ(d) = lim
‖δd‖→0

sup
δd∈D

‖xd+δd − xd‖/‖xd‖
‖δd‖/‖d‖

is called the relative condition number of the problem.

Def. 3. The number

κabs(d) = lim
‖δd‖→0

sup
δd∈D

‖xd+δd − xd‖
‖δd‖

is called the absolute condition number of the problem.

A problem is well-conditioned if the condition number κ is relatively small, and it is
badly or ill-conditioned if κ is large.
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Condition numbers, conditioning
Well-conditioned problem:

Ill-conditioned problem:
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Condition numbers, conditioning

If a problem is properly posed, then the unique solution can be written with the
so-called solution function G in the form x = G(d).

If G is differentiable then

κ(d) =
‖G′(d)‖ · ‖d‖
‖G(d)‖

and
κabs(d) = ‖G′(d)‖.

Example. In the example with the system of linear equations (2) κ(5) ≈ 1985
(calculated in 2-norm).
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Possible error sources
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Possible error sources

The real problem

↓ model error, measurement (inherited) error

Scientific model

↓ expression error

Mathematical model

↓ discretization error

Numerical model

↓ rounding error, truncation error

Computer model
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Possible error sources

The solution of ill-conditioned problems is very risky.

If the problem is ill-conditioned, then no amount of effort, trickery, or talent used in
the computation can produce accurate answers except by chance. (John R. Rice,
Matrix Computations and Mathematical Software, McGraw-Hill, 1981)
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Possible error sources

We can consider also the conditioning of a computation. Moreover, the computation
process can be also ill-conditioned (unstable). We have to avoid these type of
methods, too.
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Possible error sources

Example. Let us solve the problem on page 17 with Matlab with d = 0 and d = 10−16

using the Gaussian method (without pivoting).

With d = 0, we obtain the exact solution x = [−1, 1]T , but with d = 10−16 we obtain
the solution [0, 1]T , which is very far from the exact solution

x =

[
1

10−16 − 1
,
−1

10−16 − 1

]T
.

Rmk.
The cardinal sin of a numerical software is to produce ill-conditioned computations for
a well-conditioned problem.

It is highly desirable for a numerical software to recognize that its calculations are
ill-conditioned and to report this fact to the user.
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Measuring the error with norms
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Vector, matrix and function norms

It is highly recommended here to review the summary section about normed spaces →
page 214.

If x, y are two elements in a normed space V , then their distance can be measured
with the number ‖x− y‖.

In Rn we use the following vector norms (x = [x1, . . . , xn]T ):

I ‖x‖1 = |x1|+ · · ·+ |xn| (octahedron norm),

I ‖x‖2 =
√
x21 + · · ·+ x2n (Euclidean norm),

I ‖x‖∞ = max{|x1|, . . . , |xn|} (maximum norm, p→∞).

Norms on Rn×n are called matrix norms. (For the special properties of matrices see
the summary section → page 227) Matrix norms can be defined from vector norms
with the expression

‖A‖ := sup
x 6=o

‖Ax‖
‖x‖

. (3)

This is the so-called induced matrix norm
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Vector, matrix and function norms

Thm. 4. Suppose that the matrix norm ‖.‖ was induced by the vector norm ‖.‖.
Then

I ‖Ax‖ ≤ ‖A‖ · ‖x‖, ∀x ∈ Rn (consistency),

I ‖I‖ = 1 (I is the identity matrix),

I ‖AB‖ ≤ ‖A‖ · ‖B‖ (submultiplicity).

Proof. It follows directly from the definition of an induced matrix norm.

Thm. 5. The vector norms induce the following matrix norms:

I p = 1: ‖A‖1 = maxj=1,...,n
∑m

i=1 |aij |,
I p =∞: ‖A‖∞ = maxi=1,...,m

∑n
j=1 |aij |,

I p = 2: ‖A‖2 =
√
%(ATA) (%: spectral radius).

Proof. The first two are left as exercises. The case p = 2 can be proven as follows.
The matrix ATA is symmetric and positive semidefinite, moreover ATA can be
written in the form ATA = VΛVT (diagonalizable with an orthogonal matrix).
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Vector, matrix and function norms

Thus
‖Ax‖22
‖x‖22

=
xTATAx

‖x‖22
=

xTVΛVTx

‖x‖22

=
‖
√

ΛVTx‖22
‖x‖22

≤ %(ATA)‖x‖22
‖x‖22

= %(ATA).

We get equality in the case if we choose the vector x to be the eigenvector that
belongs to the eigenvalue of ATA with the greatest absolute value. Thus the proof is
complete.

Rmk. In the case of symmetric matrices A ∈ Rn×n, we have ‖A‖2 = %(A).

Rmk. The matrix norm ‖A‖ = maxi,j{|aij |} is not an induced norm. The so-called

Frobenius norm ‖A‖F =
√∑

i,j a
2
ij is not an induced norm, too.

The space of the continuous functions defined on [a, b] is denoted with C[a, b]. The
usual norm of this space, the maximum norm, is defined as follows

‖f‖C[a,b] = max
x∈[a,b]

{|f(x)|}.
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Norms and eigenvalues

Thm. 6. For quadratic matrices, the estimation %(A) ≤ ‖A‖ is satisfied in any
induced norm.

Proof.: Let x 6= 0 be an eigenvector of A and λ be the corresponding eigenvaluue.
Then |λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖.

Thm. 7. Let A ∈ Rn×n be a given matrix. Then for any positive ε > 0, there exists
an induced norm ‖.‖, such that ‖A‖ ≤ %(A) + ε.

Thm. 8. Let A ∈ Rn×n be a given matrix. Ak tends to 0 elementwise if and only
if %(A) < 1. Exactly in the same case, the series

∞∑
k=0

Ak

converges, moreover its sum is (I−A)−1.

Proof: ⇐ Because %(A) < 1, there exists an induced matrix norm such that ‖A‖ < 1.
Thus ‖Ak‖ ≤ ‖A‖k → 0 if k →∞. Because of the equivalence of the norms, the
matrix Ak tends to zero elementwise.
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Norms and eigenvalues

⇒ Let v be an eigenvector of the matrix with the eigenvalue λ. Then Akv = λkv.
Because Ak tends to the zero matrix, the vector Akv must tend to the zero vector.
This can happen only if |λ| < 1. This implies the condition %(A) < 1.
Let us consider the following identity:

(I−A)(I + A + A2 + · · ·+ Al) = I−Al+1.

I−A is regular because its eigenvalues cannot be zero. In this way

I + A + A2 + · · ·+ Al = (I−A)−1(I−Al+1).

The series converges only if %(A) < 1 and then its sum is (I−A)−1 indeed.

The result of the theorem will be used in the proof of the following two important
theorems.
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Norms and eigenvalues

Thm. 9. If the relation ‖A‖ < 1 is valid for the matrix A ∈ Rn×n in some induced
norm, then the following estimation holds

1

1 + ‖A‖
≤ ‖(I−A)−1‖ ≤ 1

1− ‖A‖
.

Proof: It follows from the previous theorem that the matrix I−A is non-singular.

I = (I−A)(I−A)−1 ⇒ 1 ≤ ‖I−A‖‖(I−A)−1‖

≤ (1 + ‖A‖)‖(I−A)−1‖ ⇒ estimation on the left hand side.

Let us multiply both sides of the equality I = I−A + A with the inverse of I−A,
then take the norms on both sides.

‖(I−A)−1‖ ≤ 1 + ‖(I−A)−1‖ ‖A‖,

and after reordering we obtain the inequality on the right hand side.
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Speed of convergence
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Speed of convergence

In iterative methods, the solution is the limit of a specially constructed sequence.
Nonlinear equations cannot be solve with direct methods in general. In this case we
use iterative methods, that is we generate a sequence that is convergent and its limit is
the solution of the equation.

Let us consider the sequence xk → x?. Let ek = xk − x? be the error of the kth
element.

Def. 10. We say that the order of the convergence of the sequence {xk} is the
positive real number p if the limit

lim
k→∞

‖ek+1‖
‖ek‖p

= C 6= 0

exists, it is finite and non-zero.

Rmk. If the order of convergence can be defined for a sequence, then it is unique.
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Speed of convergence

Rmk. If p = 1, then the convergence is linear. If 1 < p < 2, then the convergence is
superlinear. The case p = 2 means second order of convergence.

Rmk. If we have a sequence with convergence order p, then for large k values we have
the approximation

‖ek+1‖ ≈ C‖ek‖p.

The logarithm of the equation is

log ‖ek+1‖ ≈ logC + p log ‖ek‖.

If we graph log ‖ek+1‖ against log ‖ek‖, the points falls on a line with slope p that
intersects the vertical axis at logC.

This method can be used to check the order of convergence of a sequence (or a
method that produces the sequence) empirically.

Example. Both xk+1 = xk − (2/5)(x2k − 2) and yk+1 = yk − (y2k − 2)/2/yk
(x0 = y0 = 3) tend to

√
2. The first one is order 1 and the second one is order 2.

37 / 245



Speed of convergence

Def. 11. We say that the approximation x̃ of the real number x? has h correct
digits, if

|x̃− x?| ≤ 1

2
10m−h+1 = 5× 10m−h,

where 10m is the place value of the first significant digit of the number.

Example. Let x? = π and x̃ = 3.140. Then x̃ has 3 correct digits. Indeed
|x? − x̃| = 0.001592654 ≤ 100−3+1/2 = 0.005. The fourth digit is not correct. In the
opposite case we need 0.001592654 ≤ 0.0005, which is not valid.

Example. Let x? = π and x̃ = 3.142. Then x̃ has 4 correct digit because
|x? − x̃| = 0.000407346 ≤ 100−4+1/2 = 0.0005.
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Speed of convergence

Rmk. Let us consider a linearly convergent real sequence. Then the number of correct
digits compared to the limit of the sequence increases with − lgC in each step.
Indeed, if the kth element has h correct digits, then for the (k + 1)th element we have

|e(k+1)| ≈ C|e(k)| ≤ C10m−h+1/2 = 10m−(h−lgC)+1/2.

If C = 1/2, then − lgC ≈ 0.3, thus the number of correct digits increases with 1 in
each three steps.

Rmk. Let us consider a quadratically convergent real sequence. Then the number of
correct digits compared to the limit of the sequence increases with
(h+ lg 2− lgC − 1−m) in each step. Indeed, if the kth element has h correct digits,
then for the (k + 1)th element we have

|e(k+1)| ≈ C|e(k)|2 ≤ C(10m−h+1/2)2

= 10m−(h+(h+lg 2−lgC−1−m))+1/2.

Thus the number of correct digits doubles in each step.
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Machine number format and its corollaries
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Some simple examples

MATLAB results:

I tan(π/2) = 1.6331e+ 016

I 2−1074/2 = 0

I 2−1074 = 4.94066e− 324; 2−1074 · 1.2 = 4.94066e− 324

I 10310 =Inf

I Let yk denote the semiperimeter of a regular polygon with 2k edges inscribed into
a circle with radius 1. Then yk → π, if k →∞. Moreover we have the recursion

yk+1 = 2k+1

√
1

2

(
1−

√
1− (2−kyk)2

)
,

where y1 = 2, y2 = 2
√

2, ... , y10 = 3.14158627, y12 = 3.14166137, ...,
y19 = 3.70727600, ... Does not tend to π!
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Some simple examples
MATLAB results:

I Calculate the following expression in different ways!

y = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with a = 77617 és b = 33096.
- Matlab double precision: y = −1.1806e+ 21
- Matlab double precision without exponents (a2 = a ∗ a, etc.): y = 1.1726
- Matlab single precision: y = −6.3383e+ 29
- Matlab single precision without exponents (a2 = a ∗ a, etc.): y = 6.3383e+ 29
- Correct answer:

z = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2)

= −7917111340668961361101134701524942850

x = 5.5b8 = 7917111340668961361101134701524942848

y = z + x+
a

2b
= −2 +

77617

2 · 33096
= −0.827396059946821
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Representation of real numbers in floating point systems

(Konrad Zuse, Berlin, 1930s)

±bk
(a0
b0

+
a1
b1

+
a2
b2

+ · · ·+ ap−1
bp−1

)
≡ a0.a1a2 . . . ap−1 × bk

I b: base of the representation

I p: the number of the digits in the mantissa

I k: exponent or characteristic

I 0 ≤ ai < b integers, (i = 0, . . . , p− 1)

I If a0 6= 0 then the number is in normal form. This is a unique representation.

Illustrative example
http://www.binaryconvert.com/result_double.html?decimal=048046049
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Representation of real numbers in floating point systems

In the floating point number system we have:

I Only finite number of rational numbers.

I The numbers do not form a field (e.g. the addition is not associative). (Ex.:
123.4 + 0.04 + 0.03 + 0.02 + 0.01 in different orders in the case p = 4, b = 10,
kmax = 2 )

I The numbers form a bounded set. In the previous example, the largest number is
999.9 (overflow)

I Around zero, there is a relatively large space. The smallest positive representable
number in normal form is 0.01. Without the normal form restriction: 0.00001
(underflow).

I The smallest number that is larger then 1 is denoted by 1 + εm, where εm is the
so-called machine epsilon. In the example: 0.001.
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Double precision floating point numbers

64 bits, binary number system

I The 1. bit sores the sign of the number (0 = +, 1 = −).

I The bits 2-12. store the characteristic such that we add 1023 to the exponent and
we store the binary version of that number (from −1022 to 1023). The
characteristic -1023 stores the 0 (if the mantissa is zero) or indicates that number
is not in normal form (0.a1 . . . a52 × 2−1022). The characteristic coded with all 1s
is used for special purposes (mantissa is not zero - NaN, mantissa is zero - ±Inf
(depending on the sign bit)).

I The bits 13-64. store the mantissa (the part after the binary point).
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Double precision floating point numbers
The largest exactly representable positive number

M = 1. 111 . . . 111︸ ︷︷ ︸
52db

×21023 = 1.79769× 10308

and the smallest positive exactly representable number

m = 0. 000 . . . 000︸ ︷︷ ︸
51db

1× 2−1022 = 4.94066× 10−324.

The smallest positive exactly representable number in normal form

ε0 = 1. 000 . . . 000︸ ︷︷ ︸
52db

×2−1022 = 2.22507× 10−308.

The smallest exactly representable number next to 1

1. 000 . . . 000︸ ︷︷ ︸
51db

1× 20,

which is greater than 1 with εg = 2−52 = 2.22× 10−16
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Rounding to floating points

Thm. 12. Let 0 < x ≤M . Then

|fl(x)− x| ≤

{
m/2, if x < m/2,
εg |x|
2 , if m/2 ≤ x ≤M .

Proof: The first part is trivial. Let us suppose that x is between the floating point
numbers xi and xj . Let the number of the digits of the mantissa of xi be p and the
characteristic k. Then

|fl(x)− x| ≤ xj − xi
2

=
b−p+1bk

2
≤ εg|x|

2
.

The relative error if m/2 ≤ x ≤M is

|fl(x)− x|
|x|

≤ εg
2

=: u machine precision.
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Error of floating point operations

x � y := fl(fl(x) � fl(y))

The relative error of the subtraction (x, y > 0).

|x - y − (x− y)|
|x− y|

=
|(x(1 + δx)− y(1 + δy))(1 + δ−)− (x− y)|

|x− y|

≤ |(xδx − yδy)(1 + δ−)|
|x− y|

+ |δ−| ≤ u(1 + u)
x+ y

|x− y|
+ u,

where |δx|, |δy|, |δ−| ≤ u.

If x ≈ y, then the relative error of the subtraction can be much larger than the
machine precision (or than the relative error of x or y).
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Catastrophic cancellation

This happens by the subtraction of two numbers that are close to each other:

Example. The case of the sequence that should tend to π. The problem can be
eliminated with the following reformulation of the iteration:

yk+1 = yk

√
2

1 +
√

1− (2−kyk)2
.

Example.

√
9876 = 9.937806599× 101,

√
9875 = 9.937303457× 101, error = 10−8%

↓
√

9876−
√

9875 = 0.000503142× 101 = 5.03142 0000︸ ︷︷ ︸
no information

×10−3

error=10−4%
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Catastrophic cancellation

Better solution: √
9876−

√
9875 =

1√
9876 +

√
9875

= 0.005031418679 = 5.031418679× 10−3

Catastrophic cancellation can occur in those cases when the result is much smaller
than the absolute values of the terms summed up.

Example.

ex = lim
n→∞

n∑
i=0

xi

i!

Let x = −25. Then e−25 ≈ 1.388794× 10−11. The limit of the above sequence
according to Matlab is 8.086559× 10−7.
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Operation count

If floating point operations are the dominant cost then the computation time is
proportional to the number of mathematical operations. This is measured in flops. 1
flop is one floating point operation (−,+, ∗, /).

Def. 13. We say that the sequence {an} is of order O(nα) (α > 0) (n→∞), if
there are constants n0 > 0 and K > 0 such that |an| ≤ Knα if n ≥ n0. Notation:
an = O(nα).
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Introduction to the solution of systems of

linear algebraic equations
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Systems of linear algebraic equations
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Systems of linear algebraic equations (SLAEs)

I General form (aij , bi are known, find the values xj)

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

I Vector form
x1a1 + · · ·+ xnan = b

I Matrix form
Ax = b

Thm. 14. A SLAE is solvable iff r(A) = r(A|b). If it is solvable and r(A) < n,
then it has infinitely many solutions, if r(A) = n, then the solution is unique.
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Sensibility of the solution
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The relative error of the solution

Thm. 15. Let us suppose that, instead of the system Ax = b, we solve the system
(A + δA)y = b + δb. The solution is written in the form y = x + δx. Moreover,
let us suppose that ‖δA‖ < 1/‖A−1‖ in some induced norm. Then the following
estimation is true

‖δx‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖/‖A‖
·
(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
where κ(A) = ‖A‖‖A−1‖.

Proof. Since ‖δA‖ < 1/‖A−1‖, the estimation ‖A−1δA‖ < 1 holds. Thus, in view of
the equality A + δA = A(I−A−1δA) the matrix A + δA is regular (Theorem 8.).
Moreover,

δx = (A + δA)−1(b + δb)− x = (A + δA)−1(b + δb− (A + δA)x)

= (A + δA)−1(δb− δAx) = (I + A−1δA)−1A−1(δb− δAx).
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The relative error of the solution

Let us apply Theorem 9.

‖δx‖ ≤ ‖A−1‖
1− ‖A−1δA‖

(‖δb‖+ ‖δA‖ · ‖x‖)

=
‖A−1‖ · ‖A‖

1− ‖A−1δA‖

(
‖δb‖
‖A‖

+
‖δA‖ · ‖x‖
‖A‖

)
.

We obtain
‖δx‖
‖x‖

≤ ‖A
−1‖ · ‖A‖

1− ‖A−1δA‖

(
‖δb‖
‖A‖ · ‖x‖

+
‖δA‖
‖A‖

)
≤ κ(A)

1− κ(A)‖δA‖/‖A‖
·
(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
.
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Condition number of matrices
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Condition number of matrices

Let us notice that if the coefficients of a SLAE are changed with a small amount, then
the solution can change with a relatively large amount if the parameter κ(A) is large.

Def. 16. Let A ∈ Rn×n be a regular matrix. Then the number
κ(A) = ‖A‖ · ‖A−1‖ is called the condition number of the matrix. (Its value
depends also on the norm!)

The properties of the condition number in induced norm:

I κ(A) ≥ 1 (1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖ · ‖A−1‖),

I κ(A) = κ(A−1),

I κ(αA) = κ(A), α 6= 0,

I For orthogonal matrices: κ2(A) = 1 (‖A‖2 = ‖A−1‖2 = 1),

I For symmetric matrices: κ(A) ≥ |λmax/λmin|, moreover κ2(A) = |λmax/λmin|.
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Hilbert matrix

This is an example for a very badly conditioned matrix:

Hilbert matrix: Hn ∈ Rn×n, (Hn)i,j = 1/(i+ j − 1).

H6 =



1 1/2 1/3 1/4 1/5 1/6
1/2 1/3 1/4 1/5 1/6 1/7
1/3 1/4 1/5 1/6 1/7 1/8
1/4 1/5 1/6 1/7 1/8 1/9
1/5 1/6 1/7 1/8 1/9 1/10
1/6 1/7 1/8 1/9 1/10 1/11


Example. κ2(H6) ≈ 1.6× 107, κ2(H10) ≈ 3.5× 1013.
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Solution methods of SLAEs
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Solution methods of SLAEs

I Direct methods: They give exact solutions in finitely many steps. (Cramer rule
xi = detAi/detA (Ai-t can be obtained by changing the ith column of A to b),
x = A−1b, Gaussian method and its variants)

I Iterative methods: they form a vector sequence that tends to the solution of the
system (Gauss–Seidel, Jacobi, SOR). Important question is that when to step the
iteration process.
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Direct methods of SLAEs
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Gaussian method
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Gaussian method

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

an1x1 + · · ·+ annxn = bn
Carl Friedrich Gauss
(1777-1855)

Possible transformations that do not alter the solution:

I Multiplication of one equation with a constant (6= 0).

I Addition of one equation to another one.

I Interchange of two equations.

I Interchange of two unknowns.
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Gaussian method

The coefficient matrix and the right hand side of the system:

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
a31 a32 . . . a3n b3

...
an1 an2 . . . ann bn

66 / 245



Gaussian method

The initial matrix of the elimination [A(1)|b(1)
]:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

a
(1)
21 a

(1)
22 . . . a

(1)
2n b

(1)
2

a
(1)
31 a

(1)
32 . . . a

(1)
3n b

(1)
3

...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn b

(1)
n
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Gaussian method

The elimination of the first column:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

a
(1)
21 a

(1)
22 . . . a

(1)
2n b

(1)
2

a
(1)
31 a

(1)
32 . . . a

(1)
3n b

(1)
3

...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn b

(1)
n

l21 = a
(1)
21 /a

(1)
11 , . . . , ln1 = a

(1)
n1 /a

(1)
11
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Gaussian method

The elimination of the first column:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(1)
22 − l21a

(1)
12 . . . a

(1)
2n − l21a

(1)
1n b

(1)
2 − l21b1

0 a
(1)
32 − l31a

(1)
12 . . . a

(1)
3n − l31a

(1)
1n b

(1)
3 − l31b1

...

0 a
(1)
n2 − ln1a

(1)
12 . . . a

(1)
nn − ln1a(1)1n b

(1)
n − ln1b1
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Gaussian method

The elimination of the first column [A(2)|b(2)
]:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 a
(2)
32 . . . a

(2)
3n b

(2)
3

...

0 a
(2)
n2 . . . a

(2)
nn b

(2)
n
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Gaussian method

The elimination of the second column:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 a
(2)
32 . . . a

(2)
3n b

(2)
3

...

0 a
(2)
n2 . . . a

(2)
nn b

(2)
n

l32 = a
(2)
32 /a

(2)
22 , . . . , ln2 = a

(2)
n2 /a

(2)
22
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Gaussian method

The elimination of the second column:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 0 . . . a
(2)
3n − l32a

(2)
2n b

(2)
3 − l32b

(2)
2

...

0 0 . . . a
(2)
nn − ln2a(2)2n b

(2)
n − ln2b(2)2
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Gaussian method

The elimination of the second column [A(3)|b(3)
]:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 0 . . . a
(3)
3n b

(3)
3

...

0 0 . . . a
(3)
nn b

(3)
n
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Gaussian method

After the elimination of the (n− 1)st column, we obtain the form [A(n)|b(n)
]:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 0 . . . a
(3)
3n b

(3)
3

...

0 0 . . . a
(n)
nn b

(n)
n
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Gaussian method

Back substitution:

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1n xn = b

(1)
1

a
(2)
22 x2 + · · ·+ a

(2)
2n xn = b

(2)
2

...

a
(n)
nn xn = b

(n)
n
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Gaussian method

Back substitution:

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1n xn = b

(1)
1

a
(2)
22 x2 + · · ·+ a

(2)
2n xn = b

(2)
2

...

a
(n)
nn xn = b

(n)
n

→ xn = b
(n)
n /a

(n)
nn
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Gaussian method

Back substitution:

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1n xn = b

(1)
1

a
(2)
22 x2 + · · ·+ a

(2)
2n xn = b

(2)
2

→ x2 = (b
(2)
2 − xna

(2)
2n − · · · − x3a

(2)
23 )/a

(2)
22

...

a
(n)
nn xn = b

(n)
n

→ xn = b
(n)
n /a

(n)
nn
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Gaussian method

Back substitution:

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1n xn = b

(1)
1

→ x1 = (b
(1)
1 − xna

(1)
1n − · · · − x2a

(1)
12 )/a

(1)
11

a
(2)
22 x2 + · · ·+ a

(2)
2n xn = b

(2)
2

→ x2 = (b
(2)
2 − xna

(2)
2n − · · · − x3a

(2)
23 )/a

(2)
22

...

a
(n)
nn xn = b

(n)
n

→ xn = b
(n)
n /a

(n)
nn
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Gaussian method

The procedure can be carried out in the present form only if the constants

a
(1)
11 , . . . , a

(n)
nn , the so-called pivot elements are not zeros.

The to phase of the algorithm:

I Elimination process

I Back substitution (solution of a SLAE with a triangular coefficient matrix)

Example. Solve the SLAE.

x1 + 1/2x2 + 1/3x3 = 11/6
1/2x1 + 1/3x2 + 1/4x3 = 13/12
1/3x1 + 1/4x2 + 1/5x3 = 47/60

Solution: x1 = x2 = x3 = 1.
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Investigation of the Gaussian method
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The algorithm of the Gaussian method

Gaussian method, SLAE given with the matrix [A|b] = [āij ]n×(n+1).

for k:=1:n-1 do
for i:=k+1:n do
lik := āik/ākk
for j:=k+1:n+1 do
āij := āij − lik · ākj

end for
end for

end for
xn := ān,n+1/ānn
for k:=n-1:-1:1 do
xk := āk,n+1

for j:=k+1:n do
xk := xk − ākj · xj

end for
xk := xk/ākk

end for
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Gauss transformation

Let lk = [0, . . . , 0, lk+1,k, . . . , ln,k]
T ∈ Rn (k = 1, . . . , n− 1). Then the kth step of the

Gaussian elimination can be written as the matrix multiplication from left with the
matrix Lk := I− lke

T
k .

It is easy to see that (I− lke
T
k )−1 = I + lke

T
k .
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The performability of the Gaussian method

Thm. 17. The Gaussian method can be performed with the previous algorithm iff
all its principal minors of A are non-zero, that is det(A(1 : k, 1 : k)) 6= 0
(k = 1, . . . , n).

Proof: During the Gaussian elimination process we add some rows of the matrix to
other rows. This procedure does not modify the determinant of the matrix. Thus

det(A(1 : 1, 1 : 1)) = det(A(1)(1 : 1, 1 : 1)) = a
(1)
11 6= 0,

det(A(1 : 2, 1 : 2)) = det(A(2)(1 : 2, 1 : 2)) = a
(1)
11 a

(2)
22 6= 0,

...

det(A(1 : n, 1 : n)) = det(A(n)(1 : n, 1 : n)) = a
(1)
11 a

(2)
22 . . . a

(n)
nn 6= 0.

(We need the last condition because of the back substitution.)
This implies the statement. .
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Performance of the Gaussian method

Thm. 18. If the coefficient matrix A of the SLAE

I has a strictly dominant diagonal,

I is symmetric positive definite,

I M -matrix,

then the Gaussian method can be realized with the previous algorithm.

Before the proof, we introduce M-matrices.

Def. 19. We call a matrix A ∈ Rn×n to be an M -matrix if all its offdiagonal
elements are nonpositive, it is regular and A−1 ≥ 0.

Example.

A =


2 −1 0

−1 2 −1

0 −1 2

 , A−1 =


3/4 1/2 1/4

1/2 1 1/2

1/4 1/2 3/4

 .
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Performance of the Gaussian method - M-matrices

Thm. 20. The elements of the main diagonal of an M-matrix are positive.

Proof: If aii ≤ 0, then Aei ≤ 0. In this case ei ≤ 0, because A−1 ≥ 0, which is a
contradiction.

Thm. 21. If A is an M-matrix, then there is a positive vector g > 0 such that
Ag > 0.

Proof: Let e = [1, . . . , 1]T . Then g = A−1e is a good choice because all elements are
positive and Ag = AA−1e = e > 0.

The converse of the theorem is also true in the following form.
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Performance of the Gaussian method - M-matrices

Thm. 22. If a vector g > 0 exists with the property Ag > 0 and the offdiagonal of
A is non-positive, then A is an M-matrix.

Proof: Let G = diag(g1, . . . , gn) and D = diag(a11g1, . . . , anngn). Then the
offdiagonal of D−1AG is non-positive, moreover there are ones in the main diagonal.
In this way the matrix can be written in the form D−1AG = I−B, where B is a
nonnegative matrix with zeros in the main diagonal. Because
D−1AGe = D−1Ag > 0, (I−B)e > 0. This shows that the maximum norm of B is
less than one. Thus its spectral radius is also less than one. In this way I−B is
invertible and (see Thm. 8.) 0 ≤ I + B + B2 + · · · = (I−B)−1. Thus A is invertible
and the inverse is nonnegative.
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Performance of the Gaussian method - M-matrices

Thm. 23. Let A be an M-matrix and g a vector for which the condition of the
above theorem is valid. Then

‖A−1‖∞ ≤
‖g‖∞

mini(Ag)i
.

Proof: Let Ag = y > 0. Then

(min
i
yi)‖A−1‖∞ ≤ ‖A−1y‖∞ = ‖g‖∞,

from which the statement follows directly.
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Performance of the Gaussian method

Proof:

I One step of the Gaussian method does not spoil the dominance.

I All principal minors of symmetric positive definite matrices are positive.

I Let A be an M-matrix (∃g > 0 such that Ag > 0). Let us perform one Gauss
transformation (this can be done because the diagonal is positive). Then all the
offdiagonal elements remain nonpositive. A−1g > 0 is a positive vector with the
property A(2)A−1g = L1AA−1g = L1g > 0. This follows form the fact that L1

is a nonnegative matrix with 1s in the main diagonal. Thus, one step of the
method preserves the M-matrix property of the coefficient matrix. Thus the
diagonal is positive again, and we can step further with the method similarly.
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Operation count for the Gaussian method
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Operation count

Operation count for the elimination:

2(n− 1)n(2n− 1)

6
+

3(n− 1)n

2

=
4n3 + 3n2 − 7n

6
=

2

3
n3 +O(n2) flop

Operation count for the back substitution: 1 + 3 + · · ·+ 2n− 1 = n2 flop

Altogether:
2

3
n3 +O(n2)

For large matrices the number of operations for the back substitution is negligible
compared to that for the elimination.
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Operation count

For triangular matrices: n2 (only back substitution).

For tridiagonal matrices: 8n− 7.

Rmk. If we computed the solution x with the formula x = A−1b (suppose that we
know the inverse somehow), then the number of operations would be 2n2 − n.
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LU decomposition
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LU decomposition

Thm. 24. Let us suppose that for the matrix A the condition
det(A(1 : k, 1 : k)) 6= 0 (k = 1, . . . , n− 1) is fulfilled, that is the Gaussian
elimination method can be performed for this matrix. Then there exist a normed
lower triangular matrix L (lower) (1s are in the main diagonal) and an upper
triangular matrix U such that A = LU (LU decomposition). If the regular matrix
A has an LU decomposition, then the decomposition is unique, moreover
det(A) = u11 . . . unn.

Proof: During the Gaussian elimination process the Gauss transformations change the
matrix A as follows:

Ln−1Ln−2 . . .L1A = U,

where U is the upper triangular matrix obtained after the elimination process.
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LU decomposition

Because (I− lke
T
k )−1 = I + lke

T
k and lke

T
k lle

T
l = 0 if l > k, the matrix A can be

written in the form

A = L−11 . . .L−1n−2L
−1
n−1U =

(
n−1∏
k=1

(I + lke
T
k )

)
U

=

(
I +

n−1∑
k=1

lke
T
k

)
︸ ︷︷ ︸

alsó normált háromszögmátrix

U = LU.

The calculation of the determinant of the matrix A:

det(A) = det(L)det(U) = u11 . . . unn.
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LU decomposition

Uniqueness:
Let us suppose that there are two different decompositions: A = L̃Ũ = LU. Then

L̃−1L = ŨU−1 = I,

because the product of normed lower triangular matrices is normed lower triangular
and similar statement is true for upper triangular matrices.

Rmk. The matrix U is the upper triangular matrix that is formed during the
elimination process, matrix L is the matrix of the Lij coefficients

L =


1 0 . . . 0
l21 1 . . . 0
l31 l32 . . . 0
...
ln1 ln2 . . . 1

 .

Corollary: If one of the main minors of a regular matrix is zero, then the matrix does
not have LU decomposition.
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LU decomposition

Example. 
1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5

 =


1 0 0

1/2 1 0

1/3 1 1




1 1/2 1/3

0 1/12 1/12

0 0 1
180



Remarks:

I If we have computed the LU decomposition of A, then the matrices L and U can
be stored in the computer memory in the place of A. The SLAE Ax = b can be
solved with the solution of two SLAEs with triangular coefficient matrices.
Operation: 2n2 << 2n3/3.

I We generally do not calculate the inverse of matrices! If we need to do this, then
we can perform this task with the expression U−1L−1 or using the Gauss–Jordan
method. The number of operations is 2n3 +O(h2) in both cases.
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The effect of rounding errors

We see earlier that |fl(aij)− aij | ≤ u|aij |.

For a matrix A = [aij ], let us denote the matrix [|aij |] by |A|. Thus we can write that

|fl(A)−A| ≤ u|A|.

Thm. 25. [GL, page 105] Let us suppose that after the application of the
Gaussian method using floating point numbers, we obtain the matrices L̂ and Û,
for which L̂Û−A = δA. Then the estimation

|δA| ≤ 3(n− 1)u(|A|+ |L̂| · |Û|) +Ku2

holds, where K is a positive constant.
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Pivoting
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Pivoting

The Gaussian method can be performed only if the pivot elements are not zero. What

should we do if a
(k)
kk is zero?

I Let us choose a non-zero element from the column A(k + 1 : n, k). Let us denote
this element by s. Let us swap the two rows (change of indexes), then let us
continue the elimination.

I If there is no non-zero element in the column A(k + 1 : n, k), then the first k
columns are linearly dependent, thus det(A) = 0. In this case there is not unique
solution.

I Partial pivoting: The matrix L appears in the error estimation in Theorem 25. It
can be a good idea to decrease the elements of L in absolute value. In view of the

form lsk = a
(k)
sk /a

(k)
kk , the error can be decreased by choosing the largest element

in absolute value to be the pivot element. The number of the required operations
is (n2 − n)/2 comparison.
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Pivoting

I Full pivoting: In the kth step we choose the greatest element in absolute value
from the sub-matrix A(k : n, k : n). This is
n(n+ 1)(2n+ 1)/6− 1 = n3/3 +O(n2) comparison.

Let us consider the problem, and let us round to 4 significant digits.

0.003x1 + 59.14x2 = 59.17
5.291x1 − 6.13x2 = 46.78

Exact solution x1 = 10.00, x2 = 1.000. Without pivoting, we obtain x1 = −10,
x2 = 1.001 (cancellation), with partial pivoting we obtain the exact solution.
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LU decomposition for general matrices
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LU decomposition for general matrices

Thm. 26. (LU decomposition for general matrices) Let A ∈ Rn×n be an arbitrary
matrix. Then there is a normed lower triangular matrix L with elements not
greater than 1 in absolute value, an upper triangular matrix U, and a permutation
matrix P such that PA = LU.
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Error analysis

Let us suppose that we perform the Gaussian method with partial pivoting on a
computer that uses floating point numbers. Let us suppose that we arrive at the
matrices P, L̂ and Û, for which we have PT L̂Û−A = δA. Then the following
estimation is true:

|δA| ≤ 3(n− 1)u(|A|+ |PT | · |L̂| · |Û|) +O(u2).

Thus
‖δA‖∞ ≤ 3(n− 1)u(‖A‖∞ + n‖Û‖∞) +O(u2).

With the notation

ρ = max
i,j,k

|â(k)ij |
‖A‖∞

(in practice ≤ 10 but can be also 2n−1),

this is the so-called growth factor, we obtain

‖δA‖∞ ≤ 3(n− 1)u(‖A‖∞ + n2ρ‖A‖∞) +O(u2)

≤ 6n3ρ‖A‖∞u +O(u2).
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LDMT decomposition
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LDMT decomposition

Thm. 27. Let us suppose that all main minors of A are non-zero. Then there exist
the unique normed lower triangular matrices L and M and the diagonal matrix D
such that A = LDMT .

Proof: The LU decomposition is performable. Let D be such that dii = uii(6= 0).
Then the matrix M = (D−1U)T is a normed lower triangular matrix. Moreover
LD(D−1U) = LU = A. The uniqueness follows from the uniqueness of the LU
decomposition.

Thm. 28. For symmetric matrices A, there exists a unique normed lower
triangular matrix L and a diagonal matrix D such that A = LDLT .

Proof: The matrix M−1AM−> = M−1LD is symmetric and lower triangular ⇒
diagonal. det(D) 6= 0 ⇒ M−1L is also diagonal but also normed lower triangular.
That is M−1L = I, and M = L.
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Cholesky decomposition
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Cholesky decomposition

Thm. 29. Let us suppose that A is a symmetric and positive definite matrix. Then
there exist a unique lower triangular matrix G with positive diagonal such that
A = GGT .

Proof: The matrix A can be written uniquely in the form A = LDLT . The diagonal
matrix D has positive diagonal. Let G = L · diag(

√
d11, . . . ,

√
dnn), which is a lower

triangular matrix with positive diagonal. Moreover GGT = A.

Rmk. In practice, the Cholesky decomposition is not calculated with the above
expression but the elements of G are calculated directly from above and from left by
the help of the expression A = GGT . The number of operations is n3/3 +O(n2) flop
+ n square root.

André-Louis Cholesky, 1875–1918, French
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Iterative solutions of SLAEs
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Linear iterative methods
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When do we use iterative methods?

We would like to define a linear iteration

xk+1 = Bxk + f , k = 0, 1, . . .

such that the limit of the vector sequence is the solution of the system Ax = b.

The number of operations in one iteration step is 2n2 flop. Thus, we can perform n/3
iteration steps in order to not to exceed the number of operations of the Gauss
method. The method is mainly used for sparse matrices, when the number of nonzero
elements is O(n) (e.g. band matrices).

Questions:

I When does the sequence converge to the solution?

I How fast is the convergence?

I How to choose the matrix B and the vectors f , x(0)?

I When to stop the iteration?
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Convergence of iterative methods

Because of the inequality

‖Bx′ − f − (Bx′′ − f)‖ ≤ ‖B‖ · ‖x′ − x′‖

and the Banach fixed point theorem, if ‖B‖ < 1 in some induced norm (⇔ %(B) < 1),
and the solution x? of the system is a fixed point of the map x 7→ Bx + f then
starting the iteration from an arbitrary vector, it will tend to the solution of the
system. Moreover

‖xk − x?‖ ≤ ‖B‖k

1− ‖B‖
‖x1 − x0‖.

Rmk. The smaller the spectral radius the faster the convergence.
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The construction of the iteration

The iteration can be constructed as follows. Let A = S−T and let S be nonsingular.
Then

Ax = b → (S−T)x = b → x = S−1Tx + S−1b.

xk+1 = S−1T︸ ︷︷ ︸
B

xk + S−1b︸ ︷︷ ︸
f

.

The matrix S is called preconditioner. Because B = I− S−1A, a good preconditioner
must be

I close to A, hence the norm of B can be small in this case (see later).

I and easily invertible.

Example.

I S = A: it is close to A but the computation of its inverse is as difficult as that of
A. The method converges in one step.

I S = I: inverse is easy, but it has nothing to do with A.
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Jacobi iteration
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Jacobi iteration

Let A = D− L−R, where D is the diagonal matrix of A (suppose that there are no
zeros in the diagonal). L is the matrix of the elements below the diagonal, while R is
constructed from the elements above the diagonal, and both multiplied by −1. Let
S = D and T = R + L.

Def. 30. The iteration

xk+1 = D−1(L + R)︸ ︷︷ ︸
:=BJ

xk + D−1b

constructed with the above splitting (x0 is arbitrary) is called Jacobi iteration.
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Jacobi iteration

Carl Gustav Jacob Jacobi (1804-1851, German)

Componentwise:

(xk+1)i = − 1

aii

 n∑
j=1, 6=i

aij(xk)j − bi

 , i = 1, . . . , n.
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Gauss–Seidel iteration
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Gauss–Seidel iteration

Let us modify the previous iteration! Let us use the newly computed components!

(xk+1)i = − 1

aii

 i−1∑
j=1

aij(xk+1)j +

n∑
j=i+1

aij(xk)j − bi

 .

Matrix form:
xk+1 = D−1(Lxk+1 + Rxk + b),

that is
xk+1 = (D− L)−1R︸ ︷︷ ︸

BGS

xk + (D− L)−1b.

Def. 31. The iteration constructed with

the splitting S = D− L, T = R (x0 is
arbitrary) is called Gauss–Seidel
iteration. Philipp Ludwig von

Seidel (1821-1896, German)
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Comparison of the Jacobi and Gauss–Seidel iterations

The Gauss–Seidel seams to be better, because we always use the updated components,
but if

A =


1 1/2 1

1/2 1 1

−2 2 1


then

BJ =


0 −1/2 −1

−1/2 0 −1

2 −2 0

 , BGS


0 −1/2 −1

0 1/4 −1/2

0 −3/2 −1

 .
Thus %(BJ) = 1/2 < 1 and %(BGS) = | − 3/8−

√
73/8| ≈ 1.443 > 1.
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Relaxation methods
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Relaxation methods

The Jacobi method fulfills the equality:

(xk+1)i = (xk)i + (xk+1)i − (xk)i.

The main idea of the relaxation for the Jacobi method:

(x̃k+1)i = (x̃k)i + ω((x̃k+1)i,J − (x̃k)i), 0 6= ω ∈ R,

where (x̃0)i = (x0)i, (x̃k+1)i,J is the value where the Jacobi method would step from

(x̃
k
)i (i = 1, . . . , n), and ω is a so-called relaxation parameter.

Main goal: how to choose ω in order to make the convergence faster?

I ω = 1: we get back the Jacobi iteration.

I 0 < ω < 1: under-relaxation.

I ω > 1: over-relaxation.
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JOR method (Jacobi over-relaxation, J(ω))

The componentwise form of the JOR method (without˜):

(xk+1)i = (xk)i + ω

− 1

aii

 n∑
j=1, 6=i

aij(xk)j − bi

− (xk)i


= (1− ω)(xk)i −

ω

aii

 n∑
j=1,j 6=i

aij(xk)j − bi

 .
Thus we arrive at the vector form

xk+1 = ((1− ω)I + ωD−1(L + R))︸ ︷︷ ︸
BJ(ω)

xk + ωD−1b,

where the iteration matrix is

BJ(ω) = ωBJ + (1− ω)I. (4)
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SOR method (Successive over-relaxation, GS(ω))

This method is the relaxation of the Gauss–Seidel method:

We apply the relaxation elementwise:

(xk+1)i = (1− ω)(xk)i −
ω

aii

 i−1∑
j=1

aij(xk+1)j +

n∑
j=i+1

aij(xk)j − bi

 .
In matrix form:

xk+1 = (D− ωL)−1((1− ω)D + ωR)︸ ︷︷ ︸
BGS(ω)

xk + ω(D− ωL)−1b.
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Convergence
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Convergence of regular splitting

Def. 32. The splitting A = S−T of the matrix A ∈ Rn×n is called regular
splitting, if S is non-singular, S−1 ≥ 0 and T ≥ 0.

Thm. 33. If A = S−T is a regular splitting of a non-singular matrix A ∈ Rn×n
with the property A−1 ≥ 0 then %(S−1T) < 1.

Proof. Let B = S−1T ≥ 0. Then

0 ≤

(
k∑
i=0

Bi

)
S−1 =

(
k∑
i=0

Bi

)
(I−B)A−1

= (I−Bk+1︸ ︷︷ ︸
≥0

) A−1︸︷︷︸
≥0

≤ A−1.

That is the series is convergent, thus %(B) < 1.
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Convergence of regular splitting

Thm. 34. Let A = D− L−R (with the previous splitting), where we have
L + R ≥ 0. Then the matrix A has a regular splitting A = S−T with the
property %(S−1T) < 1 iff A is an M-matrix.

Proof (⇐) Let S = D > 0 and T = L + R. This is a regular splitting, moreover,
because A−1 ≥ 0. Thus %(S−1T) < 1 because of the previous theorem.
(⇒) The signs of the elements are OK. We have to show that A is non-singular and
its inverse is nonnegative.

A−1 = (S−T)−1 = (S(I− S−1T))−1 = (I− S−1T︸ ︷︷ ︸
%<1

)−1S−1

=

∞∑
k=0

(S−1T)kS−1 ≥ 0.
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Convergence of the Jacobi and Gauss–Seidel iterations

Thm. 35. For M-matrices, the J, J(ω), GS and GS(ω) (ω ∈ (0, 1]) methods are all
convergent.

Proof. If A is an M-matrix then A−1 ≥ 0. In the case of the JOR method, the choice

S =
1

ω
D, T =

1− ω
ω

D + L + R

gives a regular splitting for ω ∈ (0, 1]. Thus the iteration is convergent based on the
previous theorem.
In the case of the SOR method, the choice

S =
1

ω
D− L, T =

1− ω
ω

D + R

gives regular splitting for all ω ∈ (0, 1]. The case ω = 1 gives back the Jacobi and
Gauss–Seidel methods.
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Convergence of the Jacobi and Gauss–Seidel iterations

Thm. 36. For matrices with strictly dominant diagonal, the Jacobi iteration is
convergent. (Similar theorem is true for the Gauss–Seidel iteration.)

Proof.

%(BJ) ≤ ‖BJ‖∞ = max
i=1,...,n

n∑
j=1,j 6=i

|aij |
|aii|

< 1.

Thm. 37. If A is symmetric and positive definite then the Gauss–Seidel iteration is
convergent.

Thm. 38. [Ostrowski, Reich] If A is symmetric and ω ∈ (0, 2) then

%(BGS(ω)) < 1,

that is the SOR method is convergent.
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Convergence of the Jacobi and Gauss–Seidel iterations

Thm. 39. [Kahan] For the SOR method we have

%(BGS(ω)) ≥ |1− ω|,

that is the necessary condition of the convergence is ω ∈ (0, 2).

Proof.
n∏
i=1

|λi| = |det(BGS(ω))| =

= |det((D− ωL)−1)| · |det((1− ω)D + ωR)| = |1− ω|n.

Thus
%(BGS(ω)) = max

i=1,...,n
|λi| ≥︸︷︷︸

arithm. and geom. mean

≥

(
n∏
i=1

|λi|

)1/n

= |1− ω|.
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Stopping conditions
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Stopping conditions

When to stop the iteration?

I If ‖B‖ < 1 in some norm then based on the Banach fixed point theorem we have

‖x− x(j)‖ ≤ ‖B‖j

1− ‖B‖
‖x(1) − x(0)‖.

From the value ‖B‖ and the result of the first iteration, we can calculate that
how many iteration we need to achieve a prescribed accuracy in a certain norm.

I Consider the results of two consecutive iterations. If ‖xk+1 − xk‖ is sufficiently
small then we stop the iteration.

I We compute the so-called remainders: rk = b−Axk. If ‖rk+1 − rk‖/‖r(0)‖ is
sufficiently small then we stop the iteration.

I We fix a value kmax where we stop the iteration at all events.
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Gradient methods
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Minimizing property
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Minimizing property

Let A ∈ Rn×n be a symmetric, positive definite matrix and let us consider the
multivariable function

φ(x) =
1

2
xTAx− xTb

with n unknowns.

Thm. 40. The function φ(x) has exactly one stationary point, the point
x? = A−1b (the solution of the system Ax = b).

Proof. We have

φ(x) =
1

2

n∑
i=1

n∑
j=1

aijxixj −
n∑
j=1

bjxj .

After getting rid of the terms that do not contain xk we obtain:
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Minimizing property

∂φ

∂xk
(x) =

=

1

2

 n∑
k 6=i=1

aikxixk +

n∑
k 6=j=1

akjxkxj + akkx
2
k

− bkxk
′
xk

=

n∑
j=1

akjxj − bk.

That is gradφ(x) = Ax− b. Thus the only stationary point is x? indeed.
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Minimizing property

Thm. 41. The absolute minimizer of φ(x) is x? = A−1b. The minimum value is

−b
T
A−1b/2.

Proof. Let x = x? + ∆x be an arbitrary vector.

φ(x? + ∆x) = φ(x?) +
1

2
∆xTA∆x.

The statement follows from the positive definiteness of the matrix A. The minimum
value comes with simple substitution. .

When we change ∆x with x− x? in the above formula then

φ(x) = −1

2
b
T
A−1b +

1

2
(x− x?)TA(x− x?).

It can be seen from this, that the level curves of the function (if c ≥ −b
T
A−1b/2) are

hyperellipses with center x?. (If A = I then we obtain concentric circles.)
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An example in two variables

Let us consider the SLAE 2x1 = 4, 8x2 = 8. Its solution is x?1 = 2, x?2 = 1. Then

φ(x) = x21 + 4x22 − 4x1 − 8x2 = (x1 − 2)2 + 4(x2 − 1)2 − 8.

Thus the minimizer of this function is x? indeed. The minimum value is -8.

The equation of the level curve to the value c = 0

(x1 − 2)2

8
+

(x2 − 1)2

2
= 1,

which is the equation of an ellipse with center x? and semi-axis
√

8 and
√

2.
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Equivalent reformulations

The search for the solution x? of Ax = b is equivalent with

I the search for the minimizer of the function φ(x),

I the search for the lowest point of a surface, if the level curves of the surface are
hyperellipsoids.
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Directional minimizers

Let us introduce the residual vector r = b−Ax.

Let us investigate the following general question: Let us move from the point x in the
direction of the vector p 6= 0. When will we at the lowest point? That is we search for
the real parameter α that minimizes the one-variable function

φ(x + αp) = φ(x)− αpT r +
1

2
α2pTAp

= φ(x) + α

(
1

2
αpTAp− pT r

)
.

We obtain minimum if α = pT r/(pTAp).
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Basic algorithm

Basic algorithm, A ∈ Rn×n SPD, b ∈ Rn given.

k := 0, r0 := b, x0 := 0
while rk 6= 0 do
k := k + 1
Let chosse a kth search direction: pk 6= 0
αk := pTk rk−1/(p

T
kApk)

xk := xk−1 + αkpk
rk := b−Axk

end while

How to choose the search directions to achieve fast convergence to the solution of the
SLAE?
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Gradient method
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Gradient method (steepest descend)

Illustration of the method:

When we choose the steepest direction down from the point x (direction opposite to
the gradient vector, that is p = r = −(Ax− b)), and we want to get to the lowest
point in this direction, then we must step from the point x to the point
x + (rT r/(rTAr))r. This is the gradient method.
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Gradient method

Gradient method, A ∈ Rn×n SPD, b ∈ Rn given.

k := 0, r0 := b, x0 := 0
while rk 6= 0 do
k := k + 1
αk := rTk−1rk−1/(r

T
k−1Ark−1)

xk := xk−1 + αkrk−1
rk := b−Axk

end while

Thm. 42.
φ(xk+1) + (1/2)b

T
A−1b

φ(xk) + (1/2)b
T
A−1b

≤ 1− 1

κ2(A)

This shows a relatively slow convergence, especially if κ2(A) is large.
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Conjugate gradient method (CGM)
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Conjugate gradient method

Early 1950s.

Magnus Hestenes Eduard Stiefel
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Main idea of the conjugate gradient method

The vector p2 must point in the direction of the vector x? − x1.

Def. 43. Let A ∈ Rn×n be a given symmetric, positive definite matrix. We say
that the vectors x and y are A-orthogonal (A-conjugate), if xTAy = 0.
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Main idea of the conjugate gradient method

0 = pT1 r1 = pT1 (b−Ax1) = pT1 (Ax? −Ax1) = pT1 A(x? − x1).

The vector p2 must be A-orthogonal to p1. Let us search p2 in the form

p2 = r1 − β1p1.

We have

β1 =
pT1 Ar1

pT1 Ap1

.

Moreover we can simplify the calculations as follows

rk+1 − rk = b−Axk+1 − (b−Axk)

= −A(xk+1 − xk) = −Aαk+1pk+1.
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Main idea of the conjugate gradient method

Thus, we have
rk+1 = rk −Aαk+1pk+1.

Thus we arrive at the algorithm: x0 = 0, r0 = b given.
1. Let p1 = r0.
2. α1 := pT1 r0/(p

T
1 Ap1).

3. x1 := x0 + α1p1.
4. r1 := r0 − α1Ap1.
5. β1 := pT1 Ar1/(p

T
1 Ap1).

6. p2 = r1 − β1p1.
7. α2 := pT2 r1/(p

T
2 Ap2).

8. x2 := x1 + α2p2 (= x? exact solution).
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Main idea of the conjugate gradient method

How can we generalize the previous result for larger systems?

CGM, A ∈ Rn×n SPD, b ∈ Rn given.

k := 0, r0 := b, x0 := 0, p1 = r0
while rk 6= 0 do
k := k + 1
αk := pTk rk−1/(p

T
kApk)

xk := xk−1 + αkpk
rk := rk−1 − αkApk
βk := pTkArk/(p

T
kApk)

pk+1 := rk − βkpk
end while
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Convergence of the conjugate gradient method
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Convergence of the conjugate gradient method

Thm. 44. If rk−1 6= 0 for a given k (that is the algorithm is not terminated in the
(k − 1)th step) then

xk ∈ lin{p1, . . . ,pk} = lin{r0, . . . , rk−1} =: Vk,

moreover for k ≥ 2 we have

rTk−1rj = 0, j = 0, . . . , k − 2,

and
pTkApj = 0, j = 1, . . . , k − 1.

Proof. Tedious proof with induction.
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Convergence of the conjugate gradient method

Rmk. It can be shown that pTk rk−1 = rTk−1rk−1, thus

αk =
rTk−1rk−1

pTkApk
.

Moreover
rTk rk = rTk (rk−1 − αkApk) = −αkrTkApk,

and
rTk−1rk−1 = rTk−1(rk + αkApk) = αkr

T
k−1Apk = αkp

T
kApk,

so

βk = −
rTk rk

rTk−1rk−1
.
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Convergence of the conjugate gradient method

The final algorithm. With the previous results the algorithm can be simplified as
follows:

CGM, A ∈ Rn×n SPD, b ∈ Rn given.

k := 0, r0 := b, x0 := 0, p1 = r0
while rk 6= 0 do
k := k + 1
αk := rTk−1rk−1/(p

T
kApk) (2n− 1 + 2n2 + n− 1 flop)

xk := xk−1 + αkpk (2n flop)
rk := rk−1 − αkApk (2n flop)
β′k := rTk rk/(r

T
k−1rk−1) (2n− 1 flop)

pk+1 := rk + β′kpk (2n flop)
end while

Rmk. The number of operation is 2n2 + 11n− 3 = 2n2 +O(n) per iteration. If it need
more than n/3 steps then the Gauss method is faster.
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Convergence of the conjugate gradient method

Def. 45. Let A ∈ Rn×n be a SPD matrix. We define the A-norm of a vector
x ∈ Rn as ‖x‖A =

√
xTAx.

Let us introduce the notation ek = xk − x?.

Thm. 46. If rk−1 6= 0 then xk is the unique point in Vk that minimizes ‖ek‖A.

‖e1‖A ≥ ‖e2‖A ≥ · · · ≥ ‖ek‖A,

moreover ek = 0 for some index k ≤ n.

Proof. Consider the vectors xk − x? + ∆x = ek + ∆x, where ∆x is an arbitrary vector
in Vk.
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Convergence of the conjugate gradient method

‖ek + ∆x‖2A = (ek + ∆x)TA(ek + ∆x)

= (ek)
TAek + ∆xTA∆x +

=0︷ ︸︸ ︷
2 · (ek)

TA︸ ︷︷ ︸
=(Aek)T=(Axk−b)T=−rTk

· ∆x︸︷︷︸
∈Vk

= (ek)
TAek + ∆xTA∆x.

It can be seen that ∆x = 0 minimizes the norm, that is xk is the best approximation
in A-norm of the solution Vk.

It follows from the inclusion V1 ⊂ V2 ⊂ · · · ⊂ Vk that the A-norm of the error vector
decreases monotonically.

If the procedure has not been terminated earlier then Vn = Rn, since the vectors rk are
orthogonal. Moreover xn is the best approximation in A-norm in Rn, that is the
solution is x? itself.
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Convergence of the conjugate gradient method

Thm. 47. Let A be an SPD matrix with condition number κ(A). Then it is true
the error estimate

‖e(k)‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k
‖e(0)‖A.

Thm. 48. If the matrix A has s distinct eigenvalues then the conjugate gradient
method delivers the solution at least in s steps.

Rmk. The method is efficient if

I A is well-conditioned,

I A has only few distinct eigenvalues.
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Remarks
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Some remarks

I Because of the relatively large number of operations, the method is used for
sparse matrices. We do not need to find optimal relaxation parameters unlike in
the case of the SOR method.

I In exact arithmetic, CGM is a direct method but it is an iterative method in
practice due to rounding errors.

I When we terminate the iteration after the kth step then we obtain the best
approximation in A-norm in the subspace Vk.
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Some remarks

I Preconditioning: Let C be an SPD matrix such that C2 ≈ A and C2 can be
invert easily. Let us consider the system

(C−1AC−1)︸ ︷︷ ︸
Ã

(Cx)︸ ︷︷ ︸
x̃

= C−1b︸ ︷︷ ︸
b̃

.

If we solve this system with the CG method then, albeit we have to solve a system
with the coefficient matrix C2 in each step, the method converges quickly due to
the well-conditioned coefficient matrix.
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Some remarks

The full algorithm with the notation zk = C−2rk.

Preconditioned CGM.

k := 0, r0 := b, x0 := 0, solution of C2p1 = r0, z0 = p1.
while rk 6= 0 do
k := k + 1
αk := rTk−1zk−1/p

T
k pk

xk := xk−1 + αkpk
rk := rk−1 − αkApk
solution of C2zk = rk
β′k := rTk zk/(rk−1)

T zk−1
pk+1 := zk + β′kpk

end while
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QR decomposition
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Householder reflection
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Householder reflection

How can we give the reflection image of a vector x across a line through the origin
that is perpendicular to the vector v in R2?

x′ = x− 2vTx

vTv
v = x− 2vvTx

vTv
= (I− 2vvT

vTv
)x.
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Householder reflection

Let v ∈ Rn be an arbitrary nonzero vector. Then the multiplication with the matrix

H = I− 2vvT

vTv

reflects each vector x to the plain that goes through the origin and perpendicular to
the vector v.

Thm. 49. H is a symmetric and orthogonal matrix.

Proof. The symmetry is trivial.(
I− 2vvT

vTv

)(
I− 2vvT

vTv

)
= I− 4

vvT

vTv
+ 4

vvT

vTv

vvT

vTv
= I.
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Householder reflection

Question: How to choose the vector v to reflect the vector x to the axes x1, that is
parallel to the vector e1?

Hx︸︷︷︸
∈lin(e1)

= x− 2vTx

vTv
v,

thus v ∈ lin(x, e1). Let v = x + αe1.
Then

Hx = x− 2(xT + αeT1 )x

(x + αe1)T (x + αe1)
(x + αe1)

= x− 2
xTx + αx1

xTx + 2αx1 + α2
x− α2vTx

vTv
e1

=

(
1− 2

‖x‖22 + αx1
‖x‖22 + 2αx1 + α2

)
x− α2vTx

vTv
e1.

If α = ±‖x‖2 then the coefficient of x is zero.
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Householder reflection

Thus, if a vector x 6= 0 is given then v = x± ‖x‖2e1 is a good choice. Then

Hx = ∓‖x‖2
2(x± ‖x‖2e1)Tx

(x± ‖x‖2e1)T (x± ‖x‖2e1)
e1

= ∓‖x‖2
2‖x‖22 ± 2‖x‖2x1
2‖x‖22 ± 2‖x‖2x1

e1 = ∓‖x‖2e1.

Def. 50. The reflection matrix H that reflects a given vector x through a plane
that goes through the origin such a way that the reflection is on the first
coordinate axes, is called Householder reflection (that belong to the vector x).

Application: Based on the above considerations, the Householder reflection that
belongs to the vector x can be determined as follows:
- We determine the normal vector of the plane of reflection: v = x± ‖x‖2e1,
- then we construct the reflection matrix with the vector v:

H = I− 2vvT

vTv
.
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Householder reflection

Hx = H


∗
∗
...
∗

 =


∗
0
...
0

 .
Rmk. If x1 6= 0 then it is practical to choose the normal vector as
v = x + sgn(x1)‖x‖2e1.

Rmk. It is practical to norm the vector v such that the first element of the vector will
be 1. Then v can be stored in the place of the eliminated elements of x.

Rmk. Let C be an arbitrary matrix. Then the calculation of HC can be performed as
follows:

HC =

(
I− 2vvT

vTv

)
C = C− 2vvT

vTv
C

= C + v

(
−2vTC

vTv

)
︸ ︷︷ ︸

=:wT

= C + vwT .
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QR decomposition
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QR decomposition

Thm. 51. Let A ∈ Rm×n (m ≥ n) be a full rank matrix. Then there exists an
orthogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n such
that A = QR.

Proof. Let H1 be the Householder reflection that belongs to the column A(1 : m, 1).
Then the 2 : m elements of the first column of A(2) := H1A are zero. Let H̃2 be the
Householder reflection that belongs to the column A(2)(2 : m, 2). Moreover, let
H2 = diag(1, H̃2). Then the 2 : m elements of the first column of A(3) := H2A

(2)

and the 3 : m elements of the second column are zero, etc. Based on the full rank, this
procedure can be continued further. We obtain the representation

Hn · · · · ·H1 ·A = R,

where R is an upper triangular matrix. The matrix QT := Hn · · · · ·H1 is orthogonal,
so with the above notations we have A = QR.
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Givens rotation
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Givens rotation

Rotation with angle θ in R2.

x′ =

[
cos θ − sin θ
sin θ cos θ

]
x.

This matrix is orthogonal. Moreover with the choice s = sin θ and c = cos θ, the
vector [x1, x2]

T (x1 6= 0) is transformed to the form [∗, 0]T .
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Givens rotation

I If x2 = 0 then s = 0, c = 1 is a good choice.
I If x2 6= 0 then from the solution of the SLAE sx1 + cx2 = 0, s2 + c2 = 1 we

obtain the parameters

s =
±x2√
x21 + x22

, c =
∓x1√
x21 + x22

.

Generally: rotation in the hyperplane (i, j) with angle θ

G(i, j, θ) =



1
. . .

c −s
1

. . .

1
s c

. . .

1
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Application of the Givens rotation

QR decomposition (schematically):
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

→

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

→

∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

→

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0


Rmk. The number of operations of the Householder QR decomposition is
2n2(m− n/3), while for the Givens QR decomposition we have 3n2(m− n/3).
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Application of Givens rotation

The QR decomposition of an upper Hessenberg matrix (schematically):
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0
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Householder and Givens

,

Alston Scott Householder, 1904-1993 (USA), Wallace Givens, 1910-1993 (USA)
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Solution of full rank over-determined
systems
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Solution of over-determined systems
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Over-determined systems

Ax = b, A ∈ Rm×n, m ≥ n, r(A) = n

The above system generally does not have solution (or only one). Then we can search
for the vector x (denoted by xLS) that minimizes the norm ‖Ax− b‖22.
Let

φ(x) = ‖Ax− b‖22,

and let z ∈ Rn be an arbitrary vector. Because of the full column rank, ‖Az‖2 = 0 can
hold on if z = 0. Then

φ(x + z) = ‖A(x + z)− b‖22
= ‖Ax− b‖22 + ‖Az‖22 + 2zTAT (Ax− b).

Let xLS be the solution of the SLAE ATAx = ATb (zTATAz = ‖Az‖22 6= 0
provided that z 6= 0, thus ATA is SPD, thus it is non-singular). Then

φ(xLS + z) = ‖AxLS − b‖22 + ‖Az‖22 = φ(xLS) + ‖Az‖22,

that shows that xLS uniquely minimizes φ indeed.
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Over-determined systems

We have to solve the so-called normal equation

ATAx = ATb.

It has unique solution due to the full rank, thus the solution can be written in the form

xLS = (ATA)−1ATb. This is not efficient in practice.

Computation of xLS with the normal equation

I ATA is SPD.

I Let us compute its Cholesky decomposition LLT .

I Let us solve the system Ly = ATb.

I We get xLS as the solution of LTx = y.

Number of operations: (m+ n/3)n2 flop
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Over-determined systems

Computation of xLS with QR decomposition

‖Ax− b‖22 = ‖QRx− b‖22 = ‖QT (QRx− b)‖22
= ‖Rx−QTb‖22 = ‖R1x− c‖22 + ‖d‖22,

where R1 = R(1 : n, 1 : n), c = (QTb)(1 : n, :), d = (QTb)(n+ 1 : m, :).

I Compute the QR decomposition of A.

I Determine the matrix R1 = R(1 : n, 1 : n).

I Determine the vector c = (QTb)(1 : n, :).

I xLS is the solution of the SLAE R1x = c.

Number of operations: 2(m− n/3)n2 flop
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Over-determined systems

Rmk.

I If m >> n then the number of operations of the solution with the QR
decomposition is approximately the double of that of the other.

I For quadratic full rank matrices, the number of operations is the same in both
cases: 4n3/3, which is the double of that of the Gauss method. When we take
into the account also the memory usage, then the total solution time may be
comparable with that of the Gauss method, moreover, in this case there is no
growth factor, that is the method is stable.

I We cannot use these methods for (nearly) rank deficient matrices.

I For the normal equation, we can use the CG method but the condition number of
the new system will be the square of that of the original system.
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Eigenvalue problems

181 / 245



Conditioning

182 / 245



Conditioning

Thm. 52. [Bauer-Fike, 1960] Let A ∈ Rn×n be a diagonalizable matrix
(A = VDV−1). Let µ be an eigenvalue of the matrix A + δA. Then it is valid the
estimation

min
λ eigenv. of A

|λ− µ| ≤ κp(V)‖δA‖p.

Friedrich Ludwig Bauer (1923-, German)
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Conditioning

Proof. If µ is an eigenvalue of A, then the statement is trivial.
Otherwise, because A + δA− µI is singular, the matrix

V−1(A + δA− µI)V = D + V−1δAV − µI

is also singular. Thus, there is a vector x 6= 0 (an eigenvector) such that

(D− µI + V−1δAV)x = 0 /(D− µI)−1 · .
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Conditioning

(I + (D− µI)−1V−1δAV)x = 0,

that is
x = −(D− µI)−1V−1δAVx.

Hence

‖x‖p ≤ ‖(D− µI)−1‖p‖V−1‖p‖δA‖p‖V‖p‖x‖p
and

1 ≤ ‖(D− µI)−1‖pκp(V)‖δA‖p

= max
i

1

|λi − µ|
κp(V)‖δA‖p =

1

mini |λi − µ|
κp(V)‖δA‖p.

From this the statement follows already.
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Conditioning

Rmk. Thus the condition of the eigenvalue problem is determined by the condition
number of the diagonalizing matrix.

Rmk. The Hilbert matrix Hn is symmetric, thus it can be diagonalized with an
orthogonal matrix. The 2-norm of orthogonal matrices is 1, hence

min
λ eigenv. of H

|λ− µ| ≤ ‖δHn‖2.

The Hilbert matrix behaves badly in case of the solution of a SLAE, but it behaves
well in case of an eigenvalue problem.
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Conditioning

Example. The eigenvalue change of a non-symmetric, non-diagonalizable matrix. Let

A =


0 ε
1 0

1 0
. . .

. . .

1 0

 ∈ R40×40.

The characteristic polynomial of the matrix is λ40 − ε. Thus if ε = 0, then all the
eigenvalues are zeros. If ε > 0, then there is a real eigenvalue 40

√
ε and the other 39

eigenvalues are complex.

If ε changes from 0 to 10−40, then the eigenvalue changes from 0 to 0.1. Thus, the
change in the eigenvalue is 1039ε.
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The power method
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The idea of the power method

Let A ∈ Rn×n be a normal matrix, and let us suppose that A have a strictly dominant
eigenvalue, that is

|λ1| > |λ2| ≥ . . . |λn|.

Then the eigenvalue λ1 ∈ R and the corresponding eigenvector v1 can be chosen to be
real. Let v1, . . . ,vn be the normed eigenvectors, and because A is normal, they form
an orthonormal basis. Let x ∈ Rn be such that α1 6= 0 (α1 ∈ R) is not zero in the
form x = α1v1 + α2v2 + · · ·+ αnvn.

Then
Akx = α1λ

k
1v1 + α2λ

k
2v2 + · · ·+ αnλ

k
nvn

= λk1

α1v1 + α2

(
λ2
λ1

)k
v2︸ ︷︷ ︸

→0

+ · · ·+ αn

(
λn
λ1

)k
vn︸ ︷︷ ︸

→0

 .
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The power method

The power method, vT1 y(0) 6= 0, ‖y(0)‖2 = 1

for k := 1 : kmax do
x(k) := Ay(k−1)

y(k) := x(k)/‖x(k)‖2
ν(k) := (y(k))TAy(k)

end for

Thm. 53.

y(k) =
Aky(0)

‖Aky(0)‖2
,

ν(k) → λ1, moreover there exists a sequence {γk} ⊂ R such that |γk| = 1
(k = 1, . . . ) and

γky
(k) → v1.
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The power method

Proof.
The first part can be proven with induction.
Parseval’s inequality: ‖x‖2 =

√∑n
i=1 |αi|2.

Namely:

xHx =

(
n∑
i=1

αiv
H
i

)(
n∑
i=1

αivi

)
=

n∑
i=1

|αi|2.

Let y(0) = α1v1 + α2v2 + · · ·+ αnvn and we know that α1 6= 0. Hence

y(k) =

λk1

(
α1v1 + α2

(
λ2
λ1

)k
v2 + · · ·+ αn

(
λn
λ1

)k
vn

)
√∑n

i=1 |αi|2|λi|2k

=

λk1α1

(
v1 + α2

α1

(
λ2
λ1

)k
v2 + · · ·+ αn

α1

(
λn
λ1

)k
vn

)
|λ1|k|α1|

√
1 +

∑n
i=2 |

αi
α1
|2|| λiλ1 |

2k
.
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The power method

Thus
=:γk︷ ︸︸ ︷

|λ1|k|α1|
λk1α1

y(k)

=

(
v1 + α2

α1

(
λ2
λ1

)k
v2 + · · ·+ αn

α1

(
λn
λ1

)k
vn

)
√

1 +
∑n

i=2 |
αi
α1
|2|| λiλ1 |

2k
→ v1,

where |γk| = 1 (k = 1, . . . ).

0← (γky
(k))TA(γky

(k))− vT1 Av1 = |γk|2(y(k))TAy(k) − λ1
= (y(k))TAy(k) − λ1 = ν(k) − λ1.
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The power method

Rmk.

I If λ1, α1 > 0, then y(k) → v1.

I If λ1 > 0, α1 < 0, then −y(k) → v1.

I If λ1 < 0, α1 > 0, then (−1)ky(k) → v1.

I If λ1 < 0, α1 < 0, then (−1)k+1y(k) → v1.

Rmk. Let e(k) = y(k) − v1 be the error of the kth iteration vector. Then, for
sufficiently large values k we have ‖e(k+1)‖2 ≈ |λ2/λ1|‖e(k)‖2 (linear convergence).

Rmk. If x is an approximation of the eigenvector that belongs to the dominant
eigenvalue of A, then we have xT (Ax) ≈ xT (λx) and

λ ≈ xTAx

xTx

is an approximation of the eigenvalue.
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Rayleigh’s coefficient
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Rayleigh’s coefficient

Def. 54. Let 0 6= x ∈ Rn, A ∈ Rn×n. The number

R(x) =
xTAx

xTx

is called the Rayleigh’s coefficient to the vector x.

Thm. 55. Let the 0 6= x ∈ Rn be a given vector. Then

min
α∈R
‖Ax− αx‖2 = ‖Ax−R(x)x‖2.

Proof.
‖Ax− αx‖22 = (xTAT − αxT )(Ax− αx)

= xTATAx− 2αxTAx + α2xTx

= α2xTx− 2αxTAx + xTATAx.
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Rayleigh’s coefficient

Because xTx > 0 if x 6= 0, hence the function takes its minimum az

αmin =
xTAx

xTx
= R(x).

Rmk. For symmetric matrices

λmin ≤ R(x) ≤ λmax.

Rmk. For symmetric matrices

λmax = max
x∈Rn 6=0

R(x), λmin = min
x∈Rn 6=0

R(x)

(Courant-Fischer theorem).

From now on, we will consider only symmetric matrices in the eigenvalue problems!
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Inverse iteration
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Inverse iteration

Let A ∈ Rn×n be a non-singular symmetric matrix with the eigenvalues λi and with
the eigenvectors vi. Then, if µ 6= λi, then the matrix A− µI is invertible and the
eigenvectors of (A− µI)−1 are identical with those of A, its eigenvalues are
(λi − µ)−1.

If the number µ is sufficiently close to λj , then the dominant eigenvalue will be
(λj − µ)−1, thus executing the power method with the matrix (A− µI)−1, λj and vj
can be approximated.
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Inverse iteration

Inverse iteration, vT1 y(0) 6= 0, ‖y(0)‖2 = 1

for k := 1 : kmax do
x(k) := (A− µI)−1y(k−1)

(solution of (A− µI)x(k) = y(k−1))
y(k) := x(k)/‖x(k)‖2
ν(k) := (y(k))TAy(k)

end for

Rmk.

I First we compute the LU-decomposition of the matrix A− µI. This makes
possible to solve the system with 2n2 flops in each iteration.

I Much more expensive than the power method, but it can converge to any
eigenvalue.

I The condition vT1 y(0) 6= 0 is not too strict. If it does not hold initially, then it will
be satisfied after sufficiently large number of iterations due to the rounding errors.
Thus, the method will converge in this case, too.
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Approximation of eigenvalues and eigenvectors
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Rayleigh quotient iteration
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Rayleigh quotient iteration

Let us use Rayleigh’s quotient in the approximation of the eigenvalue! If y(k) → v1,
then R(y(k))→ λj .

Rayleigh quotient it., vT1 y(0) 6= 0, ‖y(0)‖2 = 1

for k := 1 : kmax do
compute R(y(k−1))
solution of (A−R(y(k−1))I)x(k) = y(k−1)

y(k) := x(k)/‖x(k)‖2
end for

Rmk. We have to solve a new SLAE in every step.

Rmk. The convergence is of order 3.
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Householder’s deflation
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Householder’s deflation

I Let us suppose that we have already determined the strictly dominant eigenvalue
λ1 and the corresponding eigenvector v1 to the matrix A ∈ Rn×n.

I Let us compute the Householder matrix for which we have Hv1 = αe1 (α 6= 0).

I Then

HAHe1 =
1

α
HAHαe1 =

1

α
HAHHv1 =

1

α
HAv1

=
1

α
Hλ1v1 =

1

α
λ1Hv1 =

1

α
λ1αe1 = λ1e1.

I Thus

HAH =

[
λ1 b

T

0 A2

]
.
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Householder’s deflation

I The eigenvalues of A2 equal the eigenvalues of A except for the eigenvalue λ1. If
|λ2| > |λ3|, then when we execute the power method with the matrix A2, we can
compute the approximation of the eigenvalue λ2: λ̃2.

I Execute the inverse iteration with the matrix (A− λ̃2I)−1. This result in the
eigenvector v2.

I Because
HAH(Hv2) = HAv2 = λ2(Hv2),

the vector Hv2 is an eigenvector of HAH with the eigenvalue λ2. Thus
Hv2(2 : n) is the eigenvector of A2 with the dominant eigenvalue λ2.

I In a similar way, we perform a similar procedure with matrix A2 instead of the
matrix A.
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Rank deflation
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Rank deflation

I Let us suppose that we have computed already the strictly dominant eigenvalue
λ1 and the corresponding eigenvector v1 of the matrix A ∈ Rn×n.

I Let us consider the matrix A− λ1v1v
T
1 . The eigenvalues of this matrix equal the

eigenvalues of A, with the only difference that zero stands instead of λ1. The
eigenvectors are the same.

I When λ2 is strictly dominant, then executing the power method with the above
matrix, we can obtain λ2 and v2.
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QR-iteráció
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QR-iteráció

Main idea: If we could find a matrix V to the matrix A such that V−1AV is an
upper triangular matrix, then the diagonal of this upper triangular matrix would
contain the eigenvalues of the matrix. Unfortunately such a matrix V cannot be
constructed directly.

Let us approximate this matrix with the orthogonal matrices of the QR decomposition.

QR iteration, A is a given symmetric matrix, A(0) := A

for k := 1 : kmax do
Construct the QR decomposition of A(k−1): A(k−1) = Q(k−1)R(k−1)

A(k) := (Q(k−1))TA(k−1)Q(k−1)

end for
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QR iteration

Thus
A(k) = (Q(k−1))T . . . (Q(0))TA Q(0) . . .Q(k−1)︸ ︷︷ ︸

=:Qk

= QT
kAQk,

and the eigenvalues of A(k) will be the same as the eigenvalues of A.

Thm. 56. a) If all the eigenvalues of A are real and different in absolute values,
then the matrix sequence {A(k)} tends to an upper triangular matrix.
b) If all the eigenvalues of a symmetric matrix A are different in absolute values,
then the matrix sequence {A(k)} tends to a diagonal matrix.

Rmk. In both cases the eigenvalues appear in the diagonal of the limit matrix.
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Remarks

Rmk. Let A = QR be an upper triangular matrix. Then the matrix

A(1) = QTAQ = QTQRQ = RQ = RQRR−1 = RAR−1

is also upper triangular.

Rmk. Every QR decomposition is 4n3/3 flops, thus the method converges very slowly.
The solution for this can be the conversion of the original matrix to Hessenberg form,
e.g. with Householder reflections (4n3/3 flop, the eigenvalues do not change):
A→ H1AH1 → H2H1AH1H2, etc., schematically

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗


For Hessenberg matrices, the QR decomposition can be performed with Givens
rotations very fast (3n2 flop).

Rmk. For symmetric matrices the Hessenberg form will be tridiagonal.
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Summary of some main concepts

I Normed spaces (norms, normed spaces, equivalence of norms, Banach spaces,
Banach fixed point theorem)

I Vector and matrix norms

I Euclidean spaces (scalar product, euclidean space, orthogonality, Gram–Schmidt
orthogonalization, orthogonal polynomials)

I Special properties of matrices

I Eigenvalues and eigenvectors of matrices

I Diagonalizability of matrices
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Normed spaces
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Vector space (linear space)

Def. 57. A set V 6= ∅ is called (real) vector space, if an addition and a
multiplication with scalar operation is defined on it with the properties:

1. x+ y = y + x, ∀a, b ∈ V ;

2. (x+ y) + z = x+ (y + z), ∀x, y, z ∈ V ;

3. ∃o ∈ V , x+ o = x, ∀x ∈ V ;

4. ∀x ∈ V , ∃x̂ ∈ V , x+ x̂ = o;

5. 1 · x = x, ∀x ∈ V ;

6. α(x+ y) = αx+ αy, ∀x, y ∈ V , ∀α ∈ R;

7. (α+ β)x = αx+ βx, ∀x ∈ V , ∀α, β ∈ R;

8. α(βx) = (αβ)x, ∀x ∈ V , ∀α, β ∈ R.

Ex.: Vectors on the plane and in space, Rn, Rm×n, C[a, b], Pn etc. with the usual
operations.
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Special vector systems in vector spaces

Def. 58. A vector x ∈ V is called the linear combination of the vectors
x1, . . . , xk ∈ V , if ∃ α1, . . . αk ∈ R such that x = α1x1 + · · ·+ αkxk.

If W ⊂ V then we denote
Lin(W ) := {x ∈ V |x is the linear combination of the vectors in W}

Def. 59. The vectors x1, . . . , xk ∈ V (k ∈ N) are called lin. independent if
α1x1 + · · ·+ αkxk = o ⇒ αi = 0 (i = 1, . . . , k). If we have infinitely many vectors,
then we require the above property for all finite subset. (↔ lin. dependent)

Def. 60. The vector system B ⊂ V is called the basis of V if it is linearly
independent and Lin(B) = V .

If V possesses a bases with finitely many elements, then V is called finite dimensional
vector space. In finite dimensional vector spaces the number of elements in each basis
are equal. This is the dimension of the vector space.
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Normed spaces

Def. 61. The pair (V, ‖.‖) is called normed space if V is a vector space and
‖.‖ : V → R is a given function (so-called norm) with the properties:

1. ‖x‖ = 0⇔ x = o;

2. ‖αx‖ = |α| · ‖x‖, ∀x ∈ V,∀α ∈ R;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V .

Ex.

I Vectors on the plane and in the space, ‖~v‖ = is the usual length of the vectors.

I Rn, x = [x1, . . . , xn]T :
‖x‖1 = |x1|+ · · ·+ |xn|,
‖x‖2 =

√
x21 + · · ·+ x2n,

‖x‖∞ = max{|x1|, . . . , |xn|}.
I C[a, b], f
‖f‖C[a,b] = maxx∈[a,b]{|f(x)|}

I Rm×n, A = [aij ] ∈ Rm×n
‖A‖ = maxi=1:m,j=1:n{|aij |} (see later).

216 / 245



Convergence in normed spaces, V = (V, ‖.‖)

Def. 62. The distance of the elements x, y ∈ V is the value ‖x− y‖.
Thm. 63.

I ‖x− y‖ ≥ 0, ∀x, y ∈ V , ‖x− y‖ = 0⇔ x = y,

I ‖x− y‖ = ‖y − x‖, ∀x, y ∈ V ,

I ‖x− y‖ ≤ ‖x− z‖+ ‖z − y‖, ∀x, y, z ∈ V .

Def. 64. We say that the sequence {xk} ⊂ V tends to the element x ∈ V if the real
number sequence {‖xk − x‖} tends to zero. Notation: xk → x.

Def. 65. The norms ‖.‖1 és ‖.‖2 defined on the same vector space are called
equivalent if ∃c1, c2 > 0 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1, ∀x ∈ V.
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Convergence in normed spaces, V = (V, ‖.‖)

Rmk. Equivalent norms define the same convergence. In finite dimensional vector
spaces all norms are equivalent.

Def. 66. We say that the sequence {xk} ⊂ V is a Cauchy sequence if ∀ε > 0,
∃M ∈ N, ∀n,m ≥M ‖xn − xm‖ < ε.

Thm. 67. All convergent sequences in V are Cauchy sequences.

Rmk. The converse of the theorem is not true.

Def. 68. We say that the normed space (V, ‖.‖) is a Banach space if all Cauchy
sequences in V are convergent.

Example. The examples listed for normed spaces are examples also for Banach spaces.
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Banach fixed point theorem

Thm. 69. Let (V, ‖.‖) be a Banach space and ∅ 6= H ⊂ (V, ‖.‖) a closed subset
({xk} ⊂ H, xk → x implies x ∈ H). Let F : H → H be a contraction (∃ 0 ≤ q < 1,
‖F (x)− F (y)‖ ≤ q‖x− y‖, ∀ x, y ∈ H).

I Then F possesses one and only one fixed point in H, that is an element
x? ∈ H such that F (x?) = x?.

I With arbitrary initial element x0 ∈ H, the sequence produced with the
iteration xk+1 = F (xk) tends to x?.

I It is valid the estimation

‖x? − xm‖ ≤
qm

1− q
‖x1 − x0‖. (5)
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Euclidean spaces
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Euclidean spaces

Def. 70. The pair (V, 〈., .〉) is called euclidean space if V is a vector space and
〈., .〉 : (V × V )→ R is a so-called scalar product with the properties:

1. 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ,

2. 〈αx, y〉 = α〈x, y〉, for all x, y ∈ V, α ∈ R,

3. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉, for all x, y, z ∈ V ,

4. 〈x, x〉 > 0, for all o 6= x ∈ V .

Two important examples

I In the space of the column vectors Rn: with the notations x = [x1, . . . , xn]T and
y = [y1, . . . , yn]T , the assignment 〈x,y〉 = x1y1 + . . .+ xnyn defines a scalar
product (xTy).

I In the vector space C[a, b], the assignment

〈f, g〉 =

∫ b

a
s(x)f(x)g(x) dx

defines a scalar product for all positive weight function s ∈ C[a, b].
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Euclidean spaces

Thm. 71. In a euclidean space (V, 〈., .〉), the assignment ‖x‖ =
√
〈x, x〉 defines a

norm (norm induced be the scalar product).

Def. 72.

I x, y ∈ V orthogonal if 〈x, y〉 = 0,

I x1, x2, . . . ∈ V orthogonal vector system if the vectors are pairwise orthogonal,

I x ∈ V is normed if ‖x‖ = 1 is fulfilled in the norm induced by the scalar
product.

I x1, x2, . . . ∈ V is an orthonormal vector system if the vectors are pairwise
orthogonal and each vector is normed.
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Gram–Schmidt orthogonalization

Thm. 73. Let x1, . . . , xk be a linearly independent vector system in a euclidean
space. Then we can set an orthonormal vector system q1, . . . , qk with the
properties lin(q1, q2, . . . , ql) = lin(x1, x2, . . . , xl) for all l = 1, . . . , k.

Rmk. The polynomials p, q are called orthogonal on the interval [a, b] with respect to
the positive weight function s if∫ b

a
s(x)p(x)q(x) dx = 0.

Def. 74. Let us consider the polynomials 1, x, x2 on the interval [−1, 1]. Then the
polynomials obtained with the Gram–Schmidt orthogonalization using the weight
function s(x) ≡ 1 in the scalar product are called Legendre polynomials, while with
the weight function s(x) = 1/

√
1− x2 we obtain the so-called Chebyshev

polynomials.
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Orthogonal polynomials

Degree Legendre Chebyshev

0 1 1
1 x x
2 (3x2 − 1)/2 2x2 − 1
3 (5x3 − 3x)/2 4x3 − 3x
4 (35x4 − 30x2 + 3)/8 8x4 − 8x2 + 1

T0 = 1, T1 = x
Chebyshev: Tk+1 = 2xTk − Tk−1.
Legendre: (k + 1)Tk+1 = (2k + 1)xTk − kTk−1.
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Orthogonal polynomials

Thm. 75. Let us suppose that the polynomials p0, p1, . . . (subscripts denote the
degrees) are pairwise orthogonal on the interval [a, b] with respect to the positive
weight function s. Then all roots of the polynomial are real, single and located in
the interval [a, b].

Proof. Let us consider the polynomial pl and denote the distinct real roots from [a, b]
with odd multiplicity by z1, . . . , zk. If k = l, then the statement is true, if k < l, then
let us consider the polynomial p(x) = (x− z1) . . . (x− zk) (p ≡ 1 if k = 0), which has
degree k. The polynomial pl · p has degree (l + k) and it does not change sign in the
interval [a, b]. Thus the condition∫ b

a
pl(x)p(x)s(x) dx = 0

cannot hold. This completes the proof.
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Special matrices

I Band matrix: ∃p, q ∈ N, ai,j = 0 if j < i− p or i < j − q. 1 + p+ q is the
so-called bandwidth.

I Diagonal matrix: offdiagonal elements are zero (p = 0, q = 0), I identity matrix.

I Upper triangular matrix: elements ”below” the diagonal are zero (p = 0).

I Lower triangular matrix: elements ”above” the diagonal are zero (q = 0).

I Upper Hessenberg matrix: elements ”below” the subdiagonal are zero (p = 1).

I Lower Hessenberg matrix: elements ”above” the superdiagonal are zero (q = 1).
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Special matrices

I Tridiagonal matrix: all elements outside the main, sub- and superdiagonals are
zero. (p = q = 1).

I Symmetric matrix: AT = A

I Skew-symmetric matrix: AT = −A

I The vectors x and y ∈ Rn are called orthogonal if xTy = 0. Moreover, we
trivially have yTx = 0. If x and y are orthogonal, then ‖x + y‖22 = ‖x‖22 + ‖y‖22
(Pythagorean theorem).

Orthogonal matrix: AAT = ATA = I

(‖Ax‖22 = xTATAx = ‖x‖22, ‖A‖2 = 1, ‖AB‖2 = ‖B‖2)
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Special matrices

I P is a permutation matrix if, with the notation ek = [0, . . . , 0,

k-adik︷︸︸︷
1 , 0, . . . , 0]T

(k = 1, . . . , n), P = [ei1 , . . . , ein ], where i1, . . . , in is a permutation of the
numbers 1, 2, . . . , n. The product AP rearranges the columns of A in the order
i1, . . . , in, while the product PTA does the same with the rows of A. It is valid
the relation PPT = PTP = I.

I Let A be a symmetric matrix, and we investigate the possible values of the
expression f(x) := xTAx if x 6= 0:
– always positive (negative): A positive (negative) definite,
– always nonnegative (nonpositive): A positive (negative) semidefinite,
– can be both positive and negative: A indefinite.

I Diagonally dominant matrix: |aii| ≥
∑n

j=1,j 6=i |aij |, ∀i = 1, . . . , n. Strictly
diagonally dominant matrix if ”>” is valid.
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Eigenvalues and eigenvectors of matrices
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Eigenvalues and eigenvectors

Def. 76. Suppose that there is a vector v 6= 0 and a number λ to the matrix
A ∈ Rn×n such that Av = λv. Then the number λ is called the eigenvalue of the
matrix A, while the vector v is called an eigenvector corresponding to the
eigenvalue λ.

Thm. 77. Eigenvalues are the solutions of the so-called characteristic equation
det(A− λI) = 0. (Real values or complex conjugate pairs.) The number of
eigenvalues counted with multiplicity is n (algebraic multiplicity). Proof. Trivial.

Thm. 78. The linear combinations of eigenvectors are also eigenvectors (6= 0).
Proof. Trivial.

Thm. 79. ∃A−1 ⇔ λi 6= 0, ∀ i = 1, . . . , n. Proof. Trivial.
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Eigenvalues and eigenvectors

Thm. 80.

det(A) =

n∏
i=1

λi, tr(A) =

n∑
i=1

λi.

Proof. It can be proven with investigation of the coefficients of the characteristic
polynomial.

Rmk. The eigenvalues can be complex numbers. In this case the eigenvectors also have
complex elements.

Def. 81. For complex matrices A, AH denotes the transpose conjugate of the
matrix. If AH = A is valid, then the matrix is called hermitian matrix. A matrix
in unitary if AHA = AAH = I.
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Eigenvalues and eigenvectors

Thm. 82. All eigenvalues of symmetric (real) matrices are real, the eigenvectors
can be chosen to real vectors.

Proof. Let v be an eigenvector with the eigenvalue λ. Then vHAv = vHλv = λvHv.
Trivially

(vHAv)H = vHAv, (vHv)H = vHv,

that is these are 1× 1 matrices. The conjugate transpose of these matrices are
themselves. Thus λ must be real. The eigenvectors are the solutions of the system of
equations (A− λI)x = 0, which can be chosen to be real.
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Eigenvalues and eigenvectors

Thm. 83. All eigenvalues of symmetric, positive (semi)definite matrices are
(nonnegative) positive.

Proof. Let v be an eigenvector with the eigenvalue λ (real). Then the statement
follows from the equalities vTAv = vTλv = λvTv > 0 and vTv > 0 (the proof is
similar for semidefinite matrices).

Def. 84. The greatest absolute value of the eigenvalues of the matrix A ∈ Rn×n is
called the spectral radius of A. Notation: %(A). That is

%(A) = max{|λi| |λi is an eigenvalue of A}.
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Gershgorin theorem

Thm. 85. Let us consider the matrix A ∈ Rn×n. Let Ki be the closed circle on the
complex plane defined as follows. Its center is aii and its radius is

∑n
j=1,j 6=i |aij |

(i = 1, . . . , n). Then all the eigenvalues of the matrix are in the set ∪iKi.

Proof. Let λ be an eigenvalue of the matrix. If λ equals one of the diagonal elements,
then the statement is true for this eigenvalue. Otherwise, let us write A in the form
A = D + T, where D is the diagonal matrix of A. A− λI is singular, thus there
exists a vector x 6= 0, with which (A− λI)x = 0, that is (D− λI)x = −Tx.
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Gershgorin theorem

Hence
‖x‖∞ ≤ ‖(D− λI)−1T‖∞‖x‖∞,

that is

1 ≤
∑n

j=1,j 6=k |akj |
|akk − λ|

for some index k = 1, . . . , n. Thus λ ∈ Kk.

Rmk. When the union of s Gershgorin circles is disjoint from the other circles, then the
union contains exactly s eigenvalues (2. Gershgorin theorem).
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Diagonalizability

Def. 86. Two quadratic matrices (A,B) are similar if ∃ S nonsingular matrix, for
which B = S−1AS.

Thm. 87. The eigenvalues of similar matrices are equal.

Proof.
det(B− λI) = det(S−1AS− λI)

= det(S−1)det(A− λI)det(S) = det(A− λI).

Rmk. If v is an eigenvector of B then Sv is an eigenvector of A.

Def. 88. A matrix A is called diagonalizable if it is similar to a diagonal matrix.
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Diagonalizability

Ex.: Not diagonalizable:

A =

[
1 1
0 1

]
. 1 is double eigenvalue, thus it must be similar to the identity matrix but then
A = S−1IS = I, which is not true.

Thm. 89. Eigenvectors that belong to different eigenvalues are linearly
independent.

Proof. Suppose Av = λv és Awi = µwi (i = 1, . . . , l), λ 6= µ and v =
∑l

i=1 αiwi

for some constant αi 6= 0. Then

λv = Av = A

l∑
i=1

αiwi = µ

l∑
i=1

αiwi = µv,

which implies the equality λ = µ.

Cor.: When all the eigenvectors of a matrix are different, then the matrix has a linearly
independent eigenvector system.
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Diagonalizability

Thm. 90. An n× n matrix is diagonalizable if and only if it has a linearly
independent eigenvector system with n vectors.

Proof. ⇐ Avj = λjvj (j = 1, . . . , n)

A
[

v1 . . . vn
]︸ ︷︷ ︸

:=S

=
[

v1 . . . vn
]  λ1 0 0 . . .

0 λ2 0 . . .
. . .


︸ ︷︷ ︸

:=Λ

Thus S−1AS = Λ, that is the matrix is diagonalizable.

⇒ ∃S regular matrix, with which S−1AS = Λ for some diagonal matrix Λ. Then the
eigenvalues of A equal the elements of Λ. Since the system ej is an eigenvector
system of Λ, Sej is an eigenvector system of A. These are linearly independent
vectors because of the regularity of S.
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Diagonalizability

Def. 91. A matrix A is called normal if AHA = AAH .

Thm. 92. Normal matrices are diagonalizable.

Proof. Let λ1 and v1 be an eigenvalue and the corresponding eigenvector of the matrix
(these always exist - they can be complex). Let v1 satisfy the condition vH1 v1 = 1 (the
vector is normed). Let us extend this vector to a unitary system (v2, . . . ,vn). Then

A
[

v1 . . . vn
]︸ ︷︷ ︸

:=S1 unitér

=
[

v1 . . . vn
]

λ1 ∗ ∗ . . .
0 ∗ ∗ . . .

. . .

0 ∗ ∗ . . .

 .
Thus

SH1 AS1 =

[
λ1 ∗
0 A2

]
.
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Diagonalizability

Let us repeat the previous procedure for the matrix A2! There exists a unitary matrix
S̃2 such that

S̃H2 A2S̃2 =


λ2 ∗ ∗ . . .
0 ∗ ∗ . . .

. . .

0 ∗ ∗ . . .

 .
Let

S2 =

[
1 0

0 S̃2

]
.

Then

SH2 SH1 AS1S2 =


λ1 ∗ ∗ . . .
0 λ2 ∗ . . .

. . .

0 0 ∗ . . .

 .
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Diagonalizability

Similarly, we can obtain the unitary matrices S3, . . . ,Sn−1. With these matrices we
have

SHn−1 . . .S
H
2 SH1 AS1S2 . . .Sn−1 =


λ1 ∗ ∗ . . . ∗
0 λ2 ∗ . . . ∗

. . .

0 0 0 . . . λn


︸ ︷︷ ︸

:=T (upper triangular)

.

Let S = S1 . . .Sn−1. This is a unitary matrix.

THT = SHAHSSHAS = SHAHAS,

TTH = SHASSHAHS = SHAAHS,

thus T is normal. T can be upper triangular only if it is diagonal.
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Diagonalizability

Rmk. Every matrix can be written in the form A = STSH , where S is unitary and T
is an upper triangular matrix. This is the so called Schur decomposition.

Rmk. Normal matrices can be diagonalized with a unitary matrix. Matrices that are
diagonalizable with a unitary matrix are normal.

Rmk. Real normal matrices are e.g. symmetric, skew-symmetric and orthogonal
matrices.

Thm. 93. A real matrix is diagonalizable with an orthogonal matrix if and only if
it is symmetric.

Proof. ⇒ Let S be orthogonal and A = SΛST . Then AT = SΛST = A, which shows
the symmetry.
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Diagonalizability

⇐ Let vλ and vµ be two eigenvalues corresponding to two different eigenvectors (λ
and µ).

vTλAvµ = vTλµvµ = µvTλvµ,

vTµAvλ = vTµλvλ = λvTµvλ = λvTλvµ

These two values must be equal. This is possible only if vTλvµ = 0. Thus the
eigenvectors corresponding to different eigenvalues are orthogonal. Thus we can
choose an orthonormal system of eigenvectors. The matrix can be diagonalized with
the matrix that have the orthonormal eigenvectors in the columns.

245 / 245


	Introduction
	Course description
	Introduction to numerical analysis

	Basic concepts of numerical analysis
	Properly posed problems
	Conditioning of a problem, condition number
	Possible error sources
	Measuring the error with norms
	Speed of convergence
	Machine number format and its corollaries

	Introduction to the solution of systems of linear algebraic equations
	Systems of linear algebraic equations
	Sensibility of the solution
	Condition number of matrices
	Solution methods of SLAEs

	Direct methods of SLAEs
	Gaussian method
	Investigation of the Gaussian method
	Operation count for the Gaussian method
	LU decomposition
	Pivoting
	LU decomposition for general matrices
	LDMT decomposition
	Cholesky decomposition

	Iterative solutions of SLAEs
	Linear iterative methods
	Jacobi iteration
	Gauss–Seidel iteration
	Relaxation methods
	Convergence
	Stopping conditions

	Gradient methods
	Minimizing property
	Gradient method
	Conjugate gradient method
	Convergence of the conjugate gradient method
	Remarks

	Introduction to the solution of systems of linear algebraic equations
	QR decomposition
	Householder reflection
	QR decomposition
	Givens rotation

	Over-determined systems
	Solution of over-determined systems

	Eigenvalue problems
	Conditioning
	The power method
	Rayleigh's coefficient
	Inverse iteration
	Rayleigh quotient iteration
	Householder's deflation
	Rank deflation
	QR iteration

	Summary of some main concepts used in the lectures
	Normed spaces
	Euclidean spaces
	Special properties of matrices
	Eigenvalues and eigenvectors of matrices
	Diagonalizability of matrices


