
Solution of nonlinear equations
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Nonlinear equations

Example. x2 = 4 sinx. Find the real solutions.

Example. x = cosx. Find the real solutions.

Example. x5 − 4x4 + x3 − x2 + 4x− 4 = 0. Find the real solutions. There is no
solution formula that computes the roots from the coefficients.

Problem: We do not know whether the equation is solvable and how many solution
does the equation have.
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Separation of the roots

Thm. 94. (Bolzano) If a continuous function satisfies the conditions f(a) · f(b) < 0
(a < b), then there exists a constant c ∈ (a, b) such that f(c) = 0.

Rmk. We calculate the function values at certain points, and if the values have
different sign at neighbouring points then there is root between these points.

Rmk. If the function is strictly monotone on a certain interval and there is a root in
the interval, then the root is unique.

Rmk. It can be helpful if we draw the graphs of the functions. E.g. we draw the graphs
of the left and the right hand side functions, and fix the interval which the intersection
located in.
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Evaluating polynomials

Horner’s scheme (William George Horner (1786-1837, British))

anx
n + . . .+ a1x+ a0 = (. . . ((anx+ an−1)x+ an−2) . . .)x+ a0

Rmk. There are altogether n additions in the formula. In 1954, Ostrowski proved that
we need at least n additions to evaluate a polynomial.

Rmk. Victor Pan proved a similar theorem for the number of the multiplications in
1966.

Thm. 95. The roots of the polynomial p(x) = anx
n + . . .+ a1x+ a0 (an, a0 6= 0)

are located in the two circle rings centred in the origin with radius R = 1 +A/|an|
and r = 1/(1 +B/|a0|), where

A = max{|an−1|, . . . , |a0|}, B = max{|an|, . . . , |a1|}.

Rmk. In case of p(x) = x5 − 4x4 + x3 − x2 + 4x− 4 we have 1/2 ≤ |xk| ≤ 5.
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Conditioning

Let us consider the properly posed problem

f(x) = d.

Let us suppose that the solution function G(d) is differentiable. Then

κ(d) =

∣∣∣∣G′(d)d

G(d)

∣∣∣∣ =

∣∣∣∣ d

f ′(G(d))G(d)

∣∣∣∣ , κabs(d) =
1

|f ′(G(d))|
.

If |f ′(x)| is small then the problem is ill-conditioned, and if it is large then the problem
is well-conditioned.
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Bisection method

f(x) = 0 −→ Find the root x?.

xk → x?
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Bisection method

Bisection method, a < b and f are given, f(a) < 0 < f(b).

for k := 1 : kmax do
x := a+ (b− a)/2
f := f(x)
if f = 0 then

end
else

if f > 0 then
b = x

else
a = x

end if
end if

end for
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Bisection method

Rmk. Convergence order cannot be defined. But it is true the estimation

|ek| ≤
b− a
2k+1

.

This shows that we can expect one digit improvement after 3 steps.

Rmk. When we use only mantissas with two digits then we compute
(0.67 + 0.69)/2 = 1.36/2 ≈ 1.4/2 = 0.7, which is not between the two numbers. But
0.67 + (0.69− 0.67)/2 = 0.67 + 0.02/2 = 0.67 + 0.01 = 0.68.

Rmk. If the function has more than one roots then the method will surely find one of
them.

Rmk. Other stopping conditions:

|xk − xk−1|
|xk−1|

≤ tol., |f(xk)| ≤ tol.
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Newton’s method

Newton (1669), Raphson (1690)

Newton’s method, x0 and f are given.

x := x0

for k := 1 : kmax do
x := x− 1

f ′(x)f(x)

if f(x) = 0 then
end

end if
end for
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Newton’s method

Thm. 96. (Monotone convergence theorem) Let us suppose that f ∈ C2 and that
the first and the second derivatives of the function do not have roots in the closed
interval determined by the points x? and x0, moreover f(x0) · f ′′(x0) > 0. Then
the sequence {xk} generated by the Newton’s method tends to x? monotonically.

Proof: Let x0 > x? és f(x0) > 0, f ′′(x0) > 0 (f ′(x) > 0). We can see from the
iteration

xk+1 = xk −
f(xk)

f ′(xk)

that xk+1 ≤ xk, that is the sequence is monotonically decreasing. It follows from the
strict convexity that xk ≥ x?. Thus the sequence is convergent. Let us denote the
limit with x̄?.
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Newton’s method

Then

xk+1︸︷︷︸
→x̄?

= xk︸︷︷︸
→x̄?

−

→f(x̄?)︷ ︸︸ ︷
f(xk)

f ′(xk)︸ ︷︷ ︸
→f ′(x̄?)

,

which implies that x̄? = x?.

Thm. 97. Under the conditions of the previous theorem, the convergence of {xk} is
of second order, moreover if |f ′(x)| ≥ m1 > 0 and |f ′′(x)| ≤M2 <∞ in the interval
determined by the points x0 and x? with appropriately chosen constants m1 and
M2, then it is valid the estimation

|ek+1| ≤
M2

2m1
|ek|2.
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Newton’s method

Proof: Let us use Taylor’s expansion around the point xk:

0 = f(x?) = f(xk) + f ′(xk)(x
? − xk) +

1

2
f ′′(ξ)(x? − xk)2,

where ξ falls between x? and xk. From the reordering of the Newton’s iteration:

0 = f(xk) + f ′(xk)(xk+1 − xk).

After subtraction:

0 = f ′(xk)(xk+1) − x?)−
1

2
f ′′(ξ)(x? − xk)2.

Finally

|f ′(xk)| · |ek+1| =
1

2
|f ′′(ξ)| · |ek|2.
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Newton’s method

Thus

lim
k→∞

|ek+1|
|ek|2

=
f ′′(x?)

2f ′(x?)
,

which shows that the order of the convergence is second order, indeed. Moreover

|ek+1| =
|f ′′(ξ)|

2|f ′(xk)|
· |ek|2 ≤

M2

2m1
|ek|2.

Rmk. Newton’s method can be applied combined with the bisection method. First we
approaches the root with the bisection method in order to fulfil the conditions of the
above theorems, then we switch to Newton’s method in order to accelerate the
convergence.
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A simple error estimation

Let us use Taylor’s expansion around the point xk:

0 = f(x?) = f(xk) + f ′(ξ)(x? − xk),

where ξ is between the points xk and x?.

Thus

|x? − xk| =
|f(xk)|
|f ′(ξ)|

≤ |f(xk)|
m1

.
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Fixed point iterations

Thm. 98. Let us suppose that the root x? ∈ [a, b] of the function f is a fixed point
of the function F : [a, b]→ R. Let us suppose that F is a contraction with
contraction coefficient q. Then the iteration xk+1 = F (xk) converges from arbitrary
initial point x0 ∈ [a, b] to the unique solution of the equation f(x) = 0. Moreover

|xk − x?| ≤
qk

1− q
|x1 − x0|

Proof: The corollary of Banach’s fixed point theorem.

Rmk. In certain cases F can be given as F (x) = x− g(x) · f(x), where g is a
sufficiently chosen number that guarantees the contraction of F .
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Fixed point iterations

Rmk. The contraction property can be guaranteed supposing that F is continuous on
[a, b] and differentiable in (a, b), moreover there exists a number 0 ≤ q < 1, for which
we have |F ′(x)| ≤ q, ∀x ∈ (a, b) (Lagrange’s mean value theorem).

Thm. 99. If, in the previous theorem, F is continuously differentiable at least r
times and

F ′(x?) = . . . = F (r−1)(x?) = 0

and F (r)(x?) 6= 0, then the convergence order of the sequence {xk} is r and it is
valid the estimation

|ek+1| ≤
Mr

r!
|ek|r,

where Mr is an upper bound for the absolute value of the rth derivative of the
function.
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Fixed point iterations

Proof: From the Taylor expansion around the point x?, we have

F (xk) = F (x?) +
F (r)(ξ)

r!
(xk − x?)r,

where ξ is between the numbers xk and x?. That is

lim
k→∞

|ek+1|
|ek|r

=
F (r)(x?)

r!

that shows the rth order convergence of the method and the required estimation

|ek+1| ≤ K|ek|r.

Rmk. Newton’s method can be written also in a fixed iteration form with the choice
g(x) = 1/f ′(x). Its second order convergence could be proven also with the previous
theorem.
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Systems of nonlinear equations
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Newton’s method for systems of nonlinear equations

Solve the nonlinear system for the solution x? ∈ Rn

f(x) = 0, f : Rn → Rn.

Example. Find the solution of the system

x2 + y − 5 = 0

x+ y2 − 3 = 0

Let us approximate f around the point x? with its second order Taylor expansion

f(x) ≈ f(x?)︸ ︷︷ ︸
0

+f
′
(x?)(x− x?),

where f
′
(x?) is the Jacobian of the function f at the solution x?. From this, we can

approximate the solution as

x? ≈ x−
[
f
′
(x?)

]−1
f(x) ≈ x−

[
f
′
(x)
]−1

f(x).
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Newton’s method for systems of nonlinear equations

Using this approximation recursively, we arrive at an iterative method, the so-called
Newton’s method

xk+1 = xk −
[
f
′
(xk)

]−1
f(xk).

(We solve the system f
′
(xk)y = f(xk) for y then we update as xk+1 = xk − y.)

Example. [
xk+1

yk+1

]
=

[
xk
yk

]
−
[
2xk 1
1 2yk

]−1 [
x2
k + yk − 5
xk + y2

k − 3

]
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Newton’s method for systems of nonlinear equations

Thm. 100. Let us suppose that f is continuously differentiable in a neighbourhood
of x?, moreover let the Jacobians be bounded and Lipschitz continuous here.
Then, when we start the Newton’s iteration sufficiently close to x?, it will converge
to x? quadratically.

Rmk. The solution of a nonlinear system may be obtained also by fixed point iteration.
If the equation f(x) = 0 is equivalent with the equation x = F(x) with a suitably
chosen function F, and the iteration xk+1 = F(xk) converges to x?, then x? is the
solution of f(x) = 0.
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Relations between root-finding and minimization

Solve f(x) = 0 =⇒ find the minimum of the multivariable function ‖f(x)‖

Find the minimum of the multivariable function f(x) =⇒ solve ∇f(x) = 0

Thm. 101. Let us suppose that in a neighbourhood of x? the multivariable
function f : Rn → R is twice continuously differentiable. If the conditions

∇f(x?) = 0, ∇2f(x?) is s.p.d.

are fulfilled, where ∇2f(x?) denotes the Hessian of the function f at the point x?,
then x? is a local minimizer of the function f .

The possible local minimizer x? may be found with the Newton’s method applied to
the equation ∇f(x) = 0 as follows:

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk).
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The problem to solve
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The problem to solve

Let us suppose that we know the values of a function f only at n+ 1 distinct points
(the so-called nodes) ((xi, fi) pairs (i = 0, . . . , n), xi 6= xj , ha i 6= j).

Problem:

I Let us calculate the values of the function at other points;

I Let us calculate the derivative of the function;

I Let us calculate the extremizers of the function;

I Let us calculate its definite integral!

Solution: We give a functions φ with the properties φ(xi) = fi and we use this
function in the calculation instead of the original (unknown) function. The functions φ
are generally chosen to be polynomials, trigonometric polynomials (sin, cos) or
piecewise polynomials.
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Lagrange interpolation
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Interpolation with polynomials

Thm. 102. For all fixed n+ 1 nodes, there exists a unique polynomial Ln with
degree at most n such that Ln(xi) = fi.

Proof: Let us choose the required polynomial to be Ln(x) =
∑n

k=0 akx
k. In order to

satisfy the interpolation property, the following equalities must be valid:

Ln(xi) =

n∑
k=0

akx
k
i = fi (i = 0, . . . , n).

This is a SLAE. Its coefficient matrix is a so-called Vandermonde matrix. Because
xi 6= xj , if i 6= j, its determinant is not zero. Thus, the SLAE can be solved uniquely
for the coefficients.
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Interpolation with polynomials – Lagrangian form

Joseph-Louis Lagrange, 1736-1813, Italian (Giuseppe Lodovico Lagrangia)

Def. 103. For the fixed nodes x0, . . . , xn, the polynomial

lk(x) =
(x− x0) . . . (x− xk−1)(x− xk+1) . . . (x− xn)

(xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)

(k = 0, . . . , n) is called the kth (it belongs to the point xk) characteristic Lagrange
polynomial.

282 / 345



Interpolation with polynomials – Lagrangian form

Trivially we have

lk(xi) =

{
1, if i = k,

0, if i 6= k.

Rmk. With the notation wn+1(x) = (x− x0) . . . (x− xn) (so-called nodal polynomial)
the kth characteristic Lagrange polynomial can be written in the form

lk(x) =
wn+1(x)

(x− xk) · w′n+1(xk)
.

Lagrange form of the interpolation polynomial:

Ln(x) =
n∑
k=0

fklk(x).

This polynomial trivially has degree at most n and its graph goes through the given
points.
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Interpolation with polynomials – Lagrangian form

Example. Find the interpolation polynomial to the points (0, 2), (1, 1) and (3, 5)!

The characteristic Lagrange polynomials are:

l0(x) =
(x− 1)(x− 3)

(0− 1)(0− 3)
=

1

3
(x− 1)(x− 3),

l1(x) =
(x− 0)(x− 3)

(1− 0)(1− 3)
=
−1

2
x(x− 3),

l2(x) =
(x− 0)(x− 1)

(3− 0)(3− 1)
=

1

6
x(x− 1),

thus the interpolation polynomial is

p2(x) = 2l0(x) + 1l1(x) + 5l2(x) = x2 − 2x+ 2.
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Conditioning

Let
Ln(x) =

n∑
k=0

fklk(x), L̃n(x) =

n∑
k=0

f̃klk(x),

where we use the approximate values f̃k instead of the original values fk.

‖Ln − L̃n‖C[a,b] ≤ max
k=0,...,n

{|fk − f̃k|}

∥∥∥∥∥
n∑
k=0

|lk|

∥∥∥∥∥
C[a,b]︸ ︷︷ ︸

Λn

.

Λn is the so-called Lebesgue constant.

Thm. 104. [Erdős, 1961] There is a constant K > 0 such that

Λn ≥
2

π
ln(n+ 1)−K

for all arbitrary choice of nodal points.

Rmk. For small n values the interpolation problem is well-conditioned and for large
values it is ill-conditioned.
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Interpolation error

Thm. 105. [Cauchy, 1840] Let the function f ∈ Cn+1 and the nodal points
x0, . . . , xn be given. Let us fix a point x and denote the interval determined by the
nodal points and the point x by Ix. Let us denote the interpolation polynomial of
f determined by the nodal points by Lnf . Then

En(x) := f(x)− (Lnf)(x) =
f (n+1)(ξx)

(n+ 1)!
wn+1(x).

Proof: If x is a nodal point, then the statement is trivial. Otherwise let

G(t) := En(t)− wn+1(t)

wn+1(x)
En(x), t ∈ Ix,

which is a Cn+1 function on the interval Ix. This function has n+ 2 roots.
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Interpolation error

Then the function G′(t) has at least n+ 1 roots, etc., and the function G(n+1)(t) has
at least one root. Let us denote this root by ξx.

G(n+1)(t) = f (n+1)(t)− (n+ 1)!

wn+1(x)
En(x),

thus

G(n+1)(ξx) = f (n+1)(ξx)− (n+ 1)!

wn+1(x)
En(x) = 0,

hence

En(x) =
f (n+1)(ξx)

(n+ 1)!
wn+1(x).
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Interpolation error

Thm. 106. If f ∈ C∞[a, b] and the nodal points x
(n)
0 , . . . , x

(n)
n are chosen from the

interval [a, b] (n = 1, 2, . . .), moreover, if ∃M > 0 such that
maxx∈[a,b]{|f (n)|} ≤Mn, then maxx∈[a,b]{|f(x)− (Lnf)(x)|} → 0 if n→∞.

Proof: We apply the previous theorem:

|En(x)| = |f
(n+1)(ξx)|
(n+ 1)!

|wn+1(x)| ≤ Mn+1

(n+ 1)!
(b− a)n+1 → 0,

if n→∞, even independently of x.

Rmk. We will generally use the notation Mn for an upper bound of max{|f (n)|} on a
predefined interval. Similarly, mn will denote a non-negative lower bound for
min{|f (n)|}.
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Runge’s example

Pl.: (Carl David Tolmé Runge, German, 1856–1927) Let us choose an equidistant
partition of the interval [−5, 5] and let us interpolate the function

f(x) =
1

1 + x2

in these points! Apparently, the interpolation polynomials do not tend to f . The
difference is particularly emphasized at the two ends of the interval.
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Interpolation error

Thm. 107. Let x be in the interval determined by the nodal points x0, . . . , xn.
Then the estimation

|wn+1(x)| ≤ n!

4
hn+1

is true for the nodal polynomial, where h is the greatest difference between the
adjacent points.

Proof: If x is a nodal point, then the statement is trivially true.
Let x ∈ (x0, x1). Then the maximizer of |(x− x0)(x− x1)| is x = (x0 + x1)/2.

|(x− x0)(x− x1)| ≤
∣∣∣∣x1 − x0

2

∣∣∣∣ · ∣∣∣∣x0 − x1

2

∣∣∣∣ ≤ h2

4
.

Thus

|wn+1(x)| ≤ h2

4
· 2h · 3h · . . . · nh =

hn+1

4
n!.
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Interpolation error

Let x ∈ (x1, x2). Then the maximizer of |(x− x1)(x− x2)| is x = (x1 + x2)/2.

|(x− x1)(x− x2)| ≤
∣∣∣∣x1 − x2

2

∣∣∣∣ · ∣∣∣∣x2 − x1

2

∣∣∣∣ ≤ h2

4
.

Thus

|wn+1(x)| ≤ 2h · h
2

4
· 2h · 3h · . . . · (n− 1)h =

hn+1

4

2n!

n
≤ hn+1

4
n!.

Etc.

Rmk. The estimations for the inner sub-intervals are less then that for the outer
sub-intervals. Thus we can expect that if we choose the nodal point denser close to
the ends of the interval, then the interpolation error can be decreased.

Rmk. Independently of x, we have

|En(x)| ≤ Mn+1

4(n+ 1)
hn+1.
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Chebyshev polynomials

Pafnuty Lvovich Chebyshev, Russian, 1821-1894

Let us consider the polynomials defined with the recursion

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x)

on the interval [−1, 1].

Example. T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.
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Chebyshev polynomials

Thm. 108.
Tn(x) = cos(n · arccosx).

Proof: The statement is trivial for n = 0 and n = 1. Let us assume that the statement
is true for n = k. Then

2x cos(k arccosx)− cos((k − 1) arccosx)

= 2x cos(k arccosx)

−(cos(k arccosx)x+ sin(k arccosx) sin(arccosx))

= x cos(k arccosx)− sin(k arccosx) sin(arccosx)

= cos(arccosx) cos(k arccosx)− sin(k arccosx) sin(arccosx)

= cos((k + 1) arccosx).

Thus the statement is true also for k + 1.
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Chebyshev polynomials
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Chebyshev polynomials

Thm. 109.
|Tn(x)| ≤ 1,

moreover the leading coefficient of Tn(x) is 2n−1.

Proof: Trivial.

Thm. 110. Let T̃n(x) = Tn(x)/2n−1, that is we norm the Chebyshev polynomial to
leading coefficient 1. Then

‖T̃n‖C[−1,1] ≤ ‖p(1)
n ‖C[−1,1],

where p
(1)
n is an arbitrary polynomial with degree at most n and normed to leading

coefficient 1.
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Chebyshev polynomials

Proof: The extremizers of Tn(x) are the points t
(n)
k = cos(kπ/n) (k = 0, . . . , n).

Indeed, Tn(t
(n)
k ) = cos(n arccos(t

(n)
k )) = cos(kπ) = ±1 (alternately). Thus, these

points are the extremizers also of T̃n.

We use reduction to absurdity. Thus, let us suppose that ∃p(1)
n , such that

‖p(1)
n ‖C[−1,1] < ‖T̃n‖C[−1,1].

Then the polynomial q(x) = T̃n(x)− p(1)
n has degree at most n− 1 and the sign of this

polynomial is the same as that of the original polynomial. The polynomial q(x) should
change sign n times, which contradicts to the fact that the polynomial has degree at
most n− 1.
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Chebyshev polynomials

Rmk.

|En(x)| = |f
(n+1)(ξx)|
(n+ 1)!

| (x− x0)(x− x1) . . . (x− xn)︸ ︷︷ ︸
=T̃n+1(x)

|

Let us choose the nodal points to be the roots of the polynomial Tn+1(x), that is the
values

zk = cos

(
(2k + 1)π

2(n+ 1)

)
, k = 0, . . . , n!

In this case we have

|En(x)| ≤ Mn+1

(n+ 1)!

1

2n

independently of x.
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Newton form of the interpolation polynomial

Let the nodes (xi, fi) (i = 0, . . . , n) be given. Let us search for the interpolation
polynomial in the so-called Newton form:

pn(x) = c0

+ c1(x− x0)

+ c2(x− x0)(x− x1)

+ . . .

+ cn(x− x0) . . . (x− xn−1).

Rmk. This is a polynomial of degree at most n. Because the terms are linearly
independent, all polynomials with degree at most n can be uniquely written in this
form. Thus the coefficients ck (k = 0, . . . , n) are uniquely determined.
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Newton’s divided differences

Def. 111. Let be given a function f and the nodal points y0, . . . , yk. Then the
uniquely defined leading coefficient of the interpolation polynomial defined by the
points (y0, f(y0)), . . . , (yk, f(yk)) is called Newton’s divided difference of order k.
Notation: [y0, . . . , yk]f .

Rmk. Trivially, we have [yi]f = f(yi).

Rmk. [y0, . . . , yk]f is uniquely defined and does not depend on the order of the nodal
points y0, . . . , yk.

Thm. 112. If Lk−1 is the interpolation polynomial defined by the points
(x0, f0), . . . , (xk−1, fk−1) and Lk is the interpolation polynomial defined by the
points (x0, f0), . . . , (xk, fk), then the relation

Lk(x) = Lk−1(x) + [x0, . . . , xk]f · (x− x0) . . . (x− xk−1)

is true.
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Newton’s divided differences

Proof: Lk − Lk−1 is a polynomial of degree at most k, and it takes zero value at the
points x0, . . . , xk−1. Moreover its leading coefficient is the same as that of Lk:
[x0, . . . , xk]f . These conditions determine the polynomial

Lk(x)− Lk−1(x) = [x0, . . . , xk]f · (x− x0) . . . (x− xk−1)

uniquely, which gives the statement of the theorem.

Corollary: Based on the previous theorem, the ck coefficients of the Newton form of
the interpolation polynomial can be calculated as ck = [x0, . . . , xk]f .

Thm. 113. The Newton’s divided differences fulfil the recursion formula

[x0, . . . , xk]f =
[x1, . . . , xk]f − [x0, . . . , xk−1]f

xk − x0
.
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Newton’s divided differences

Proof: Let us denote the interpolation polynomial defined by the points
(x1, f1), . . . , (xk, fk) by qk−1. Then

Lk(x) =
x− x0

xk − x0
qk−1(x) +

xk − x
xk − x0

Lk−1(x).

Indeed, this is a polynomial of degree at most k and Lk(xi) = fi (i = 0, . . . , k). The
statement of the theorem follows from the comparison of the leading coefficients. We
have

leading coef. of Lk =
leading coef. of qk−1

xk − x0
− leading coef. of Lk−1

xk − x0
,

that is

[x0, . . . , xk]f =
[x1, . . . , xk]f − [x0, . . . , xk−1]f

xk − x0
.
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Newton form of the interpolation polynomial

Calculation of the coefficients ck:

By the definition we have: [xi]f = fi (i = 0, . . . , n). According to the recursion
formula:

[x0, x1]f =
[x1]f − [x0]f

x1 − x0
, [x1, x2]f =

[x2]f − [x1]f

x2 − x1
,

[x0, x1, x2]f =
[x1, x2]f − [x0, x1]f

x2 − x0
, etc.

Example. Find the interpolation polynomials to the points (0,2), (1,1) és (3,5)! We
construct a so-called Newton’s divided difference table:

xi fi = [xi]f [., .]f [., ., .]f

0 2 = c0

−1 = c1

1 1 1 = c2

2
3 5
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Newton form of the interpolation polynomial

Thus the interpolation polynomial has the form:

2 + (−1)(x− 0) + 1(x− 0)(x− 1) = x2 − 2x+ 2.

For the calculation of the substitution value at a fixed point x we can use a Horner’s
scheme like rewriting:

2 + (−1)(x− 0) + 1(x− 0)(x− 1) = (1(x− 1) + (−1))(x− 0) + 2.

Generally:
Ln(x) = (([x0, . . . , xn]f · (x− xn−1)

+[x0, . . . , xn−1]f) · (x− xn−2)

+[x0, . . . , xn−2]f) · (x− xn−3) . . .+ [x0]f.
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Newton form of the interpolation polynomial

Addition of new nodes is easy: the new table:

xi fi = [xi]f [., .]f [., ., .]f [., ., ., .]f

0 2 = c0

−1 = c1

1 1 1 = c2

2 1/2 = c3

3 5 1/2
1

−1 1

Thus the interpolation polynomial:

2 + (−1)(x− 0) + 1(x− 0)(x− 1) + 1/2(x− 0)(x− 1)(x− 3)

= x3/2− x2 − x/2 + 2.
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Comparison of Lagrange’s and Newton’s formulas

Lagrange

I Less accurate.

I The calculation of pn(x) for a fixed x costs 4n2 flop.

I Addition of new nodes is complicated.

I The characteristic Lagrange polynomials lk(x) are independent of the values fk.
Thus, if these values change, then the new interpolation polynomial can be
obtained easily.

Newton

I More accurate.

I 3n2/2 flop is the calculation of the divided differences and additional 3n flop is
the calculation of the function values..

I Addition of new nodes is easy.

I When the function values change, the polynomial must be newly calculated.
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Hermite interpolation
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Hermite interpolation
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Hermite interpolation

Let the different nodal points x0, . . . , xn be given together with the function and
derivative values

f
(0)
0 , f

(1)
0 , . . . , f

(m0)
0 ; . . . ; f (0)

n , f (1)
n , . . . , f (mn)

n .

We would like to find the polynomial p(x) that satisfies the conditions

p(i)(xk) = f
(i)
k , k = 0, . . . , n; i = 0, . . . ,mk.

We have altogether m0 + 1 +m1 + 1 + . . .mn + 1 = n+ 1 +
∑n

k=0mk =: N data.
Thus, we can expect that a polynomial with degree at most N − 1 will be sufficient.

Thm. 114. There exists a unique polynomial HN−1 with degree at most N − 1
that satisfies the conditions

H
(i)
N−1(xk) = f

(i)
k , k = 0, . . . , n; i = 0, . . . ,mk.
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Hermite interpolation

Proof: Let HN−1(x) = a0 + a1x+ . . .+ aN−1x
N−1. Then we have to solve the SLAE:

 1 x0 x2
0 . . . xN−1

0

0 1 2x0 . . . (N − 1)xN−2
0

...
...

... . . .
...



a0

a1

a2
...

 =


f

(0)
0

f
(1)
0

f
(2)
0
...


We have here N equations and N unknowns, and the coefficient matrix is non-singular.
Indeed, if a non-zero vector existed such that its product with the matrix is a non-zero
vector, then the polynomial HN−1 would have N roots, which is impossible.

Hermite–Fejér interpolation polynomial: At each point only the function value and the
derivative are given (mk = 1, k = 0, . . . , n). The the interpolation polynomial has
degree at most 2n+ 1.
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Hermite–Fejér interpolation

Construction of the interpolation polynomial with divided differences:

[x0, x1]f =
f(x0)

(x0 − x1)
+

f(x1)

(x1 − x0)

Let x1 = x0 + h and suppose that h→ 0. Then

lim
h→0

[x0, x0 + h]f = lim
h→0

(
−f(x0)

h
+
f(x0 + h)

h

)
= f ′(x0).

Example. x0 = 0, x1 = 1, f
(0)
0 = 0, f

(1)
0 = 0, f

(0)
1 = 1 és f

(1)
1 = 3.

xi fi = [xi]f [., .]f [., ., .]f [., ., ., .]f

0 0 = c0

0 = c1

0 0 1 = c2

1 1 = c3

1 1 2
3

1 1

H3(x) = x3
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Spline interpolation
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Spline interpolation - first and second degree splines

Spline = thin and flat bendable wood or metal strip used to draw curves.

When in an interpolation problem the nodes are given, then Chebyshev nodes cannot
be used in order to decrease the interpolation error. In this case we generally
interpolate with piecewise polynomials of lower degree. (The points that determine the
sub-interals are called knots.)

Example. First and second degree splines

First-degree splines : interpolation error =M2h
2/8 (h is the maximum step-size).
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Spline interpolation - cubic splines

Cubic splines. Let us construct a function s defined on the whole interval [x0, xn] that
possesses the following properties:

I s(xk) = fk (k = 0, . . . , n),

I g, g′, g′′ are continuous,

I s|[xi−1,xi] is an at most cubic polynomial (i = 1, . . . , n).

The number of data: 4n.
The number of the conditions: 2n+ 2(n− 1) = 4n− 2.

We may choose two parameters arbitrarily:
a) natural cubic spline: s′′(x0) = s′′(xn) = 0.
b) clamped cubic spline: the values s′(x0) and s′(xn) are fixed.

Thm. 115. There is a unique function s that satisfies the above conditions.
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Construction of the natural cubic splines

For the sake of simplicity let xk − xk−1 = h for all k = 1, . . . , n. Let us consider the
polynomial sk that interpolates on the kth sub-interval.
Let

sk(xk−1) = fk−1, sk(xk) = fk, s
′
k(xk−1) = dk−1, s

′
k(xk) = dk,

where dk−1 and dk are the for now unknown derivatives s′(xk−1) and s′(xk). Let us
apply the Hermite–Fejér interpolation:

xi fi = [xi]f [., .]f [., ., .]f [., ., ., .]f
xk−1 fk−1

dk−1

xk−1 fk−1
fk−fk−1

h2 −
dk−1

h
fk−fk−1

h

(
−2

fk−fk−1

h2 +
dk−1+dk

h

)
/h

xk fk
dk
h
−

fk−fk−1

h2

dk
xk fk
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Construction of the natural cubic splines

The polynomial sk and its second derivatives can be obtained. For these we can set
n+ 1 equations: n− 1 equations in the inner points and 2 equations in the end points.
In this way we arrive at the SLAE:

h

3



2 1 0 0 0 . . . 0 0 0
1 4 1 0 0 . . . 0 0 0
0 1 4 1 0 . . . 0 0 0
...
0 0 0 0 0 . . . 1 4 1
0 0 0 0 0 . . . 0 1 2




d0

d1
...
dn

 =


f1 − f0

f2 − f0

f3 − f1
...

fn − fn−1


With the solution of the system for the derivatives dk, the polynomials sk can be
obtained with Hermite–Fejér interpolation.
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Construction of the natural cubic splines

Example. Let us determine the natural cubic interplation of the points (0,1), (1,2) and
(2,0)! Az egyenletrendszer

1

3

 2 1 0
1 4 1
0 1 2

 d0

d1

d2

 =

 1
−1
−2

 .
We obtain that d0 = 7/4, d1 = −1/2, d2 = −11/4 and the cubic polynomials that
belong to the sub-intervals:

s1(x) = −3

4
x3 +

7

4
x+ 1, s2(x) =

3

4
x3 − 9

2
x2 +

25

4
x− 1

2
.
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Construction of the clamped cubic splines

The SLAE can be obtained similarly to the previous case. Now d0 and dn are fixed,
and modify the system according to this fact.

h

3



4 1 0 0 0 . . . 0 0 0
1 4 1 0 0 . . . 0 0 0
0 1 4 1 0 . . . 0 0 0
...
0 0 0 0 0 . . . 1 4 1
0 0 0 0 0 . . . 0 1 4


 d1

...
dn−1

 =


f2 − f0 − d0h/3

f3 − f1
...

fn−1 − fn−3

fn − fn−2 − dnh/3


With the solution of the system for the derivatives dk, the polynomials sk can be
obtained with Hermite–Fejér interpolation.
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Construction of the clamped cubic splines

Example. Let us determine the claped cubic spline interpolation to the points (0,1),
(1,2) and (2,0), if s′(0) = 0 and s′(2) = 1!
Thus, d0 = 0 and d2 = 1. The ”SLAE” symplifies to

1

3
4d1 = −1− 1

3
0− 1

3
1,

which gives d1 = −1.

The cubic polynomials that belong to the sub-intervals are:

s1(x) = −3x3 + 4x2 + 1, s2(x) = 4x3 − 17x2 + 21x− 6.
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Properties of cubic splines

Error estimate for cubic splines

Thm. 116. Let f ∈ C4[x0, xn] and let s be the cubic spline interpolating f on an
equidistant mesh (with stepsize h) x0 < x1 < . . . < xn. Then

‖f (r) − s(r)‖C[x0,xn] ≤ Crh4−r‖f (4)‖C[x0,xn], r = 0, 1, 2, 3,

where C0 = 5/384, C1 = 1/24, C2 = 3/8 and C3 = 1.

Minimum norm property of cubic splines

Thm. 117. Let f ∈ C2[a, b] and let s be the cubic spline interpolating f . Then∫ xn

x0

|s′′(x)|2 dx ≤
∫ xn

x0

|f ′′(x)|2 dx,

where equality holds iff f = s.
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Trigonometric interpolation
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Interpolating trigonometric polynomials
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Trigonometric polynomials

When we know that the data are the values of a periodic function, then it is advisable
to interpolate with trigonometric functions instead of polynomials. .

Let us suppose that we know the values (fk) of a 2π periodic function at the points
xk = 2πk/(n+ 1) ∈ [0, 2π) (k = 0, . . . , n), where n is a positive natural number. Let
us search for the interpolating function in the form

tm(x) = a0 +

m∑
j=1

(aj cos(jx) + bj sin(jx)),

which has to satisfy the equalities tm(xk) = fk (k = 0, . . . , n). tm is called
trigonometric polynomial of mth degree.
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Trigonometric polynomials

Thus we have 2m+ 1 coefficients and n+ 1 equations.

I If n is even, then we can expect that a polynomial with degree m = n/2 will be
suitable.

I If n is odd, then introduce the notation m = (n+ 1)/2. Then we have n+ 2
coefficients and n+ 1 equations, that is the system is underdetermined. The term
with the coefficient bm has the following values at the nodes:

bm sin(mxk) = bm sin

(
n+ 1

2

2πk

n+ 1

)
= bm sin(πk) = 0.

Hence, the value of bm can be chosen to be zero. We say that in this case the
trigonometric polynomial (in the case if n is odd) is balanced.
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Interpolation with trigonometric polynomials

Thm. 118. Let us suppose that the fk values (k = 0, . . . , n) are given at the nodes
xk = 2πk/(n+ 1). Let us suppose that n is odd. Then there exists a unique
balanced trigonometric polynomial of degree m = (n+ 1)/2 denoted by tm that
satisfies the interpolation condition tm(xk) = fk (k = 0, . . . , n).

Proof: We will construct the polynomial. We work with complex numbers. Using the
equality eiφ = cosφ+ i sinφ we obtain that

eijx = cos(jx) + i sin(jx), e−ijx = cos(jx)− i sin(jx),

which results in the formulas

cos(jx) =
eijx + e−ijx

2
, sin(jx) =

eijx − e−ijx

2i
.
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Interpolation with trigonometric polynomials

After back substitution to the original polynomial tm and with the use of the
interpolation property we obtain that

fk = tm(xk) = a0 +

m∑
j=1

(
aj
eijxk + e−ijxk

2
+ bj

eijxk − e−ijxk
2i

)

=

=:c0︷︸︸︷
a0 +

m−1∑
j=1


=:cj︷ ︸︸ ︷

aj − bji
2

eijxk +

=:c2m−j︷ ︸︸ ︷
aj + bji

2
e−ijxk



+

=:cm︷︸︸︷
am
2
eimxk +

=:cm︷︸︸︷
am
2
e−imxk︸ ︷︷ ︸

cmeimxk

=

n∑
j=0

cje
ijxk , k = 0, . . . , n.
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Interpolation with trigonometric polynomials

We applied the equality
eimxk = e−imxk = (−1)k.

The original real coefficients can be calculated with the complex coefficients cj :

a0 = c0, am = cm, aj = cj + c2m−j (j = 1, . . . ,m− 1),

bj = i(cj − c2m−j) (j = 1, . . . ,m− 1).

Because fk ∈ R, taking the complex conjugate of both sides we arrive at the form

fk = fk =
n∑
j=0

cje
−ijxk , k = 0, . . . , n,

that is c0, cm ∈ R és c2m−j = cj , thus aj = 2Re(cj) és bj = −2Im(cj)
(j = 1, . . . ,m− 1).
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Interpolation with trigonometric polynomials

Let us introduce the notation

w = e−i2π/(n+1).

w is a (n+ 1)th root of unity, because wn+1 = 1. Moreover,

e−ijxk = wjk

and using this notation we have to solve the SLAE

fk =

n∑
j=0

cjw
−jk, k = 0, . . . , n

for the coefficients cj . We show that this SLAE always has a unique solution, which
fact shows that the trigonometric interpolation polynomial is unique.
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Interpolation with trigonometric polynomials

With the notations

fn+1 = [f0, . . . , fn]T , cn+1 = [c0, . . . , cn]T ,

Fn+1 ∈ R(n+1)×(n+1), (Fn+1)jk = wjk

the SLAE can be written in the form

fn+1 = FH
n+1cn+1.

Lemma. Fn+1F
H
n+1 = (n+ 1)In+1

Proof:
(Fn+1F

H
n+1)kj =

n∑
s=0

wksw−js =

n∑
s=0

ws(k−j) =

=

{
n+1, if j = k,
(wk−j)n+1−1
wk−j−1

= 0, if j 6= k.
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Interpolation with trigonometric polynomials

Let us return to the proof of the theorem. Let us multiply both sides of the SLAE

fn+1 = FH
n+1cn+1

by the matrix Fn+1. We obtain

Fn+1fn+1 = Fn+1F
H
n+1cn+1,

that is the coefficients cj can be calculated uniquely as

cn+1 =
1

n+ 1
Fn+1fn+1.

Let us introduce the notation f̂n+1 := (n+ 1)cn+1.
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Interpolation with trigonometric polynomials

Fourier analysis (Discrete Fourier Transform - DFT): We calculate the cj complex
Fourier coefficients from the data

f̂j = (n+ 1)cj =

n∑
k=0

fkw
kj , j = 0, . . . , n.

Fourier synthesis (Inverse Discrete Fourier Transform - IDFT): We calculate the
nodal function values by the help of the Fourier coefficients cj .

1

n+ 1

n∑
j=0

f̂jw
−jk = fk, k = 0, . . . , n.
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Interpolation with trigonometric polynomials

Rmk. If the function values fk are real then c2m−j = cj (j = 1, . . . ,m− 1), that is
these coefficients are complex conjugate of each other, a0 = c0 and am = cm are real
values. Thus aj = 2Re(cj) and bj = −2Im(cj). From this, we obtain

a0 =
1

n+ 1

n∑
k=0

fk, am =
1

n+ 1

n∑
k=0

fk cos(mxk),

aj =
2

n+ 1

n∑
k=0

fk cos(jxk) (j = 1, . . . ,m− 1),

bj =
2

n+ 1

n∑
k=0

fk sin(jxk) (j = 1, . . . ,m− 1).

335 / 345



Interpolation with trigonometric polynomials

When the number of nodes is odd, then a similar theorem can be proven. The proof is
also similar. .

Thm. 119. Let us suppose that the function values fk (k = 0, . . . , n) are given at
the nodes xk = 2πk/(n+ 1). Let us suppose that n is even. Then, there exists a
unique trigonometric polynomial tm with degree m = n/2 such that tm(xk) = fk
(k = 0, . . . , n).

Corollary: In this case the real discrete Fourier coefficients can be calculated as follows

a0 =
1

n+ 1

n∑
k=0

fk,

aj =
2

n+ 1

n∑
k=0

fk cos(jxk) (j = 1, . . . ,m),

bj =
2

n+ 1

n∑
k=0

fk sin(jxk) (j = 1, . . . ,m).
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Interpolation with trigonometric polynomials

Rmk. Let f be a 2π periodic function. Let us search the function in the so-called
Fourier series form

f(x) = α0 +

∞∑
j=1

(αj cos(jx) + βj sin(jx)).

Then it can be shown that

α0 =
1

2π

∫ 2π

0
f(x) dx,

αj =
1

π

∫ 2π

0
f(x) cos(jx) dx

βj =
1

π

∫ 2π

0
f(x) sin(jx) dx.

Let us notice that the discrete Fourier coefficients are the approximations of the
integrals above.
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Interpolation with trigonometric polynomials

Example. f = [0, 1, 4, 9]T , n = 3, m = (n+ 1)/2 = 2, w = e−2iπ/4 = −i.

f̂4 =


1 1 1 1
1 w w2 w3

1 w2 w4 w6

1 w3 w6 w9




0
1
4
9

 =

=


1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i




0
1
4
9

 =


14

−4 + 8i
−6

−4− 8i

 .
Thus a0 = 14/4 = 7/2, a1 = −8/4 = −2, b1 = −16/4 = −4, a2 = −6/4 = −3/2.
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Fast Fourier transform
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Fast Fourier transform (FFT)

The procedure was given already by Gauss in the early 1800s, but his work has been
forgotten. After the advent of the computers the method was newly rediscoverd.
James W. Cooley (IBM), John W. Tukey (Princeton), 1965.

f̂j =

n∑
k=0

fkw
kj , j = 0, . . . , n.

The calculation of the discrete Fourier coefficients requires approximately (n+ 1)2

complex multiplications, provided that the powers of w have been computed already
(each coefficient requires n+ 1 multiplications).

How could we determine these coefficient with much less effort using the
special form of the elements of the matrix.
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Fast Fourier transform (FFT)

Example. In the previous problem we need to calculate the multiplication
1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i




0
1
4
9

 .
Let us swap the columns of the matrix in order to put the odd numbered columns to
the ”left part” of the matrix!

1 1 1 1
1 −1 −i i

1 1 −1 −1
1 −1 i −i




0
4

1
9


Here the two blocks on the left hand side is F2, the lower right block is the opposite of
the upper right one, and the upper right block is[

1 0
0 w

]
F2 =

[
1 0
0 −i

]
F2.
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Fast Fourier transform (FFT)

In fact, we have to calculate only the product of the matrix F2 with the vectors [0, 4]T

and [1, 9]T , moreover the elements of the last product must be multiplied with the
powers of w (w0, w1, w2, . . . , wm−1), respectively.

General case: Let us suppose that n+ 1 is an even number. Then we need to perform
the multiplication

f̂0

f̂1

f̂2
...

f̂m−1

f̂m
f̂m+1

...

f̂n


=



1 1 1 1 1
1 w w2 . . . wn

1 w2 w4 . . . w2n

...
...

... . . .
...

1 wm−1 w2(m−1) . . . w(m−1)n

1 wm w2m . . . wmn

1 w(m+1) w2(m+1) . . . w(m+1)n

...
...

... . . .
...

1 wn w2n . . . wn
2




f0

f1

f2
...
fn

 .
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Fast Fourier transform (FFT)

Let us change the odd numbered columns forward!
Then the elements of the vector f will be also rearranged.

We obtain the product:



1 1 1 1 1 1 1 1

1 w2 . . . wn−1 w w3 . . . wn

1 w4 . . . w2(n−1) w2 w6 . . . w2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 w2(m−1) . . . w(m−1)(n−1) wm−1 w3(m−1) . . . w(m−1)n

1 w2m . . . wm(n−1) wm w3m . . . wmn

1 w2(m+1) . . . w(m+1)(n−1) w(m+1) w3(m+1) . . . w(m+1)n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 w2n . . . wn(n−1) wn w3n . . . wn2





f0
f2
f4
.
.
.

fn−1
f1
f3
.
.
.

fn


.

The upper left block is Fm because w2 is an mth root of unity. The lower left block is
also Fm. This can be checked easily using the fact that w is an (n+ 1)th root of
unity. The upper right block can be written in the form DmFm with the notation
Dm = diag(1, w, w2, . . . , wm−1). The lower right block is the opposite of this.
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Fast Fourier transform (FFT)

When we partition the vector f̂ and the rearranged f (denoted by f̃) accordingly, the
product can be written in the form[

f̂1

f̂2

]
= Fn+1f =

[
Im Dm

Im −Dm

] [
Fm 0
0 Fm

] [
f̃1

f̃2

]
.

What can we win compared to the (n+ 1)2 complex multiplication?
Fmf̃1 and Fmf̃2 require ((n+ 1)/2)2 complex multiplications each. The product of the
diagonal matrix Dm and the vector Fmf̃2 requires (n+ 1)/2 complex multiplicaitons.
We do not need more multiplications. We must perform

2

(
n+ 1

2

)2

+
n+ 1

2

complex multiplications.
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Fast Fourier transform (FFT)

The algorithm become really fast if we use the above procedure in the case of the half
sized matrices, too. This can be done repeatably if n+ 1 is a power of 2.
Let Ql denote the number of complex multiplications of FFT when we use 2l nodes.
Then trivially

Ql = 2Ql−1 + 2l−1

and taking into the account that Q1 = 1, we obtain with induction that

Ql = l2l−1 =
1

2
(n+ 1) log2(n+ 1).

This is a significant drop in the number of operations:

n+ 1 DFT FFT

25 = 32 1024 80
210 = 1024 1048576 5120

220 = 1048576 1099511627776 10485760
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