
Numerical differentiation
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The formulation of the problem

Let us suppose that the values of the differentiable function f are known at the points
x0, x±1 = x± h, x±2 = x± 2h, . . . (h > 0). Let us denote these values by
f0, f±1, f±2, etc., respectively. We approximate the derivatives of the function at the
point x. These derivatives will be denoted by f ′0, f

′′
0 , etc.

Def. 120. Let us denote an arbitrary derivative of the sufficiently smooth function
f at the point x by Df . An approximation of this value is denoted by ∆f(h) (the
approximation depends on the distance of the nodes). We say that the
approximation ∆f(h) at the point x is of order p (at least) if there is a real
numbet K > 0 such that

|Df −∆f(h)| ≤ Khp.

(That is |Df −∆f(h)| = O(hp).)
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Forward difference

Based on the definition of the differential quotient

f ′ ≈ f1 − f0

h
=: ∆f+.

Moreover, if f ∈ C2 then we have

∆f+ =
f1 − f0

h
=

(f0 + f ′0h+ f ′′(ξ)h2/2)− f0

h
= f ′0 + f ′′(ξ)h/2.

This shows that the order of the forward difference approximation is 1, that is halving
the step-size h the error will be halved.
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Backward difference

Based on the definition of the differential quotient

f ′ ≈ f0 − f−1

h
=: ∆f−.

Moreover, if f ∈ C2 then we have

∆f− =
f0 − f−1

h
=
f0 − (f0 − f ′0h+ f ′′(ξ)h2/2)

h
= f ′0 − f ′′(ξ)h/2.

This shows that this approximation is of first order.
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Centered difference

Let us investigate the arithmetic mean of the two previous approximations.

∆fc :=
∆f+ + ∆f−

2
=
f1 − f−1

2h
.

Let us apply Taylor expansion around the point x. Let f ∈ C3.

∆fc =
f1 − f−1

2h

=
f0 + f ′0h+ f ′′0 h

2/2 + f ′′′(ξ1)h3/6

2h

−f0 − f ′0h+ f ′′0 h
2/2− f ′′′(ξ2)h3/6

2h
= f ′0 + f ′′′(ξ)

h2

6
.

Thus, this approximation has order 2.

354 / 470



Approximation of the second derivative

355 / 470



Approximation of the second derivative

The second derivative is the derivative of the first derivative.

∆2fc =
∆f+ −∆f−

h
=
f1 − 2f0 + f−1

h2
.

Let us apply Taylor expansion again around the point x. Let f ∈ C4.

∆2fc =

=
f0 + f ′0h+ f ′′0 h

2/2 + f ′′′0 h
3/6 + f ′′′′(ξ1)h4/24

h2
− 2f0

h2

+
f0 − f ′0h+ f ′′0 h

2/2− f ′′′0 h
3/6 + f ′′′′(ξ2)h4/24

h2
= f ′′0 + f ′′′′(ξ)

h2

12
.

Thus, the approximation has order 2.
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Other approximations

Rmk. A fourth order centered approximation of the first derivative

−f2 + 8f1 − 8f−1 + f−2

12h
.

Rmk. A second order forward and backward approximation of the first derivative

−3f0 + 4f1 − f2

2h
,

f−2 − 4f−1 + 3f0

2h
.

Rmk. The above formulas can be generalized easily to cases when the step-size is not
equidistant.
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Other approximations

Rmk.

I The derivative at x0 of the polynomial fitted to the points (x0, f0), (x1, f1) (at
most first degree) is the same as the forward difference. The derivative at x0 of
the polynomial fitted to the points (x−1, f−1), (x0, f0) (at most first degree) is
the same as the backward difference.

I The derivative at x0 of the polynomial fitted to the points
(x−1, f−1), (x0, f0), (x1, f1) (at most second degree) is the same as the centered
difference, moreover, its second derivate gives the centered difference
approximation of the second derivative.

I The derivative at x0 of the third degree spline function fitted to the points
(x− h, f−1), (x, f0), (x+ h, f1) is the same as the the centered difference
approximation of the first derivative.
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Richardson extrapolation

Lewis Fry Richardson (1881-1953, British, physicist, metheorologist,
psichologist)

Let the two values of the forward difference approximations of a function f at the
point x0 be: ∆f+(h) and ∆f+(h/2).

∆f+(h) = f ′0 + f ′′(ξh)
h

2
,

∆f+(h/2) = f ′0 + f ′′(ξh/2)
h

4
.

If h is small then ξh/2 ≈ ξh. Thus the approximation 2∆f+(h/2)−∆f+(h) may give a
higher order approximation to the derivative. Indeed, the order of this approximation is
2.
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Motivation
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Necessity of numerical integration

Newton–Leibniz formula: ∫ b

a
f(x) dx = F (b)− F (a).

We cannot use this formula if

I we cannot give the antiderivative of the function in closed form (e.g. sinx/x,
sinx2, e−x

2
).

I the computation of the antiderivative is complicated and time consuming.

I we know the values of the function at certain points only (e.g. measurements).
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Requirements

Let us suppose that the function f is integrable on the interval [a, b], and that we
know the values of the function at the nodes

a ≤ x0 < x1 < . . . < xn ≤ b.

Let these function values denoted by f0, . . . , fn, respectively. Then we should give an
estimation to the integral by the help of the nodes and the function values.

Expectations:

I The approximation must be calculated easily,

I When we refine the nodes then the approximations must tend to the exact
integral value of the functions,

I For sufficiently smooth functions the convergence must be fast.
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Quadrature formula

Let us denote the exact definite integral of the integrable function f by I(f) and let
one of its approximations at the given nodes be

In(f) =

n∑
k=0

akfk.

Both the coefficients ak (the so-called weights) and the function values fk may depend
on the number and the location of the nodes. The above formula is called quadrature
formula.
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Quadrature formula

Def. 121. We say that a quadrature formula is closed if it uses the function values
both at a and b. If it does not use these values then the quadrature formula is
open.

Let h be the larges step size between two adjacent nodes.

Def. 122. We say that the convergence order of the quadrature formula In(f) is
r ≥ 1 (at least), if |I(f)− In(f)| = O(hr).

Def. 123. We say that the exactness order of the quadrature formula In(f) is
r ≥ 1, if I(p) = In(p) for all polynomials from Pr−1 but there exists a polynomial p
with degree r (p ∈ Pr) such that I(p) 6= In(p).
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Newton–Cotes formulas

Def. 124. We call a quadrature formula interpolation quadrature formula, if it
approximates the integral with the integral of the interpolation polynomial fitted
to the given function values.

Def. 125. If in an interpolation quadrature formula the nodes are equidistant (h),
then the formula is called to be a Newton–Cotes-formula.

Roger Cotes (1682-1716, angol)
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Newton–Cotes formulas

The function f can be written in the form

f(x) = Ln(x) + rn(x),

where Ln is the interpolation polynomial fitted to the function f on the given nodes,
and rn is the error term. Then the exact integral can be approximated as follows

I(f) =

∫ b

a
f(x) dx =

∫ b

a
Ln(x) dx+

∫ b

a
rn(x) dx

=

∫ b

a

(
n∑
k=0

fklk(x)

)
dx+

∫ b

a
rn(x) dx

=

n∑
k=0

fk


ak︷ ︸︸ ︷∫ b

a
lk(x) dx


︸ ︷︷ ︸

In(f)

+

∫ b

a
rn(x) dx.
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Newton–Cotes formulas

Here the weights depend on the interval of the integration. We can make them
interval independent by changing the variable in the integral: let x = a+ (b− a)t
(t ∈ [0, 1]), thus dx/dt = (b− a). In this way we have

ak =

∫ b

a
lk(x) dx =

∫ 1

0
lk(a+ (b− a)t)(b− a) dt

= (b− a)

∫ 1

0
lk(a+ (b− a)t) dt,

where the last factor depends solely on the number of the interpolation nodes and their
relative location. These values can be calculated and tabulated in advance: these are
the so-called Newton–Cotes coefficients.
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Closed Newton–Cotes formulas

With the setting

a = x0 < x1 < . . . < xn = b, xk+1 − xk = h = (b− a)/n

we obtain the weights
ak = (b− a)Nn,k

c ,

where the coefficients Nn,k
c are called closed Newton–Cotes coefficients.

Nn,k
c k = 0 k = 1 k = 2 k = 3

n = 1 1/2 1/2 ← trapezoidal rule
n = 2 1/6 4/6 1/6 ← Simpson’s rule
n = 3 1/8 3/8 3/8 1/8

Example. Applying the Simpson rule to∫ 3

1
x2 − 2x+ 2 dx = 2(1 · 1/6 + 2 · 4/6 + 5 · 1/6) = 14/3

we obtain the exact integral value.
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Open Newton–Cotes formulas

With the setting

a = x−1 < x0 < . . . < xn < xn+1 = b, xk+1 − xk = h = (b− a)/(n+ 2)

we obtain the weights
ak = (b− a)Nn,k

o ,

where the coefficients Nn,k
o are called open Newton–Cotes coefficients.

Nn,k
o k = 0 k = 1 k = 2

n = 0 1 ← midpoint rule
n = 1 1/2 1/2
n = 2 2/3 −1/3 2/3
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Newton–Cotes formulas

Thm. 126. A quadrature rule based on n+ 1 nodes is exact for Pn iff it is an
interpolation quadrature formula.

Proof. ⇐ Trivial.
⇒ It must be exact for all characteristic Lagrange polynomials lj(x). That is∫ b

a
lk(x) dx =

n∑
j=0

aklk(xj) = ak.
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Newton–Cotes formulas

Let Nn,k denote the closed or the open Newton–Cotes coefficients.

Thm. 127.
n∑
k=0

Nn,k = 1, Nn,k = Nn,n−k.

Proof. In view of the previous theorem we have∫ b

a
1 dx = b− a =

n∑
k=0

(Nn,k(b− a)1) = (b− a)

n∑
k=0

Nn,k.

This proves the first statement. The second one follows from the symmetry
lk(a+ x) = ln−k(b− x).

Rmk. If n is large then it is not practical to use the Newton–Cotes formulas. The
Newton–Cotes coefficients Nn,k may be negative that may cause cancellation. We
generally use composite formulas.

376 / 470



Newton–Cotes formulas

Rmk. The Newton–Cotes formulas based on n+ 1 nodes are exact for Pn. If n is even,
then they are exact also for Pn+1.

Namely, let pn+1 be a polynomial from Pn+1. Let us rewrite it to a polynomial of the
term (x− (a+ b)/2).

pn+1(x) = αn+1

(
x− a+ b

2

)n+1

+ αn

(
x− a+ b

2

)n
+ . . .+ α0︸ ︷︷ ︸

The formula is exact for this.

,

moreover, ∫ b

a
αn+1

(
x− a+ b

2

)n+1

︸ ︷︷ ︸
=:f(x)

dx = (b− a)

n∑
k=0

Nn,k︸︷︷︸
Nn,n−k

f(xk)︸ ︷︷ ︸
−f(xn−k)

= 0.

Thus the formula is exact for this polynomial.
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Composite trapezoidal rule

Let the nodes be equidistant with distance h. The so-calles composite trapezoidal rule
approximates the integral as follows:

Itrap(f) =
h

2
f0 + h

n−1∑
k=1

fk +
h

2
fn.
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Composite trapezoidal rule

I Closed quadrature formula. The application of the formula is easy.

I sn ≤ Itrap(f) ≤ Sn, that is, if the function is Riemann integrable, then the value
of the formula tends to the exact integral value as the partition is refined.

I Order of exactness: 2. It is exact only on first degree polynomials. Order of the
convergence is 2.

Example. ∫ 1

0
sinx/x dx ≈ 0.9460830704, n = 1/h.

n In(f) |I(f)− In(f)|
1 0.920735 0.25× 10−1

10 0.945832 0.25× 10−3

100 0.946080 0.25× 10−5

1000 0.9460830704 0.27× 10−7
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Composite trapezoidal rule

Thm. 128. For f ∈ C2[a, b] functions, the error of the composite trapezoidal rule is

I(f)− Itrap(f) = −(b− a)h2

12
f (2)(η),

where η ∈ (a, b).

Rmk.

|I(f)− Itrap(f)| ≤ (b− a)h2

12
M2.

Lemma. (One of the mean value theorems of integral calculus.) If φ is a nonnegative
integrable function on [a, b] and g is continuous, then there exists a value η ∈ (a, b)
such that ∫ b

a
φ(x)g(x) dx = g(η)

∫ b

a
φ(x) dx.
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Composite trapezoidal rule

Proof. We use the error formula of the interpolation error and the above mean value
theorem. Consider first the kth subinterval∫ xk

xk−1

f(x) dx− fk + fk−1

2
h

=

∫ xk

xk−1

f (2)(ξx)(x− xk−1)(x− xk)
2

dx

= −f (2)(ηk)

∫ xk

xk−1

(x− xk−1)(xk − x)

2
dx =

= −f (2)(ηk)
h3

12
.

Because we have n intervals, the total error has the form

−
n∑
k=1

f (2)(ηk)
h3

12
= −nf (2)(η)

h3

12
= −(b− a)h2

12
f (2)(η)

with a suitably chosen η ∈ (a, b) value.
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Composite midpoint rule

Imid(f) = h(f1/2 + . . .+ fn−1/2).

Open quadrature formula. Order: 2 (convergence and exactness).

Thm. 129. The error of the composite midpoint rule for f ∈ C2[a, b] functions is

I(f)− Iérintő(f) =
(b− a)h2

24
f (2)(η),

where η ∈ (a, b).
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Composite Simpson’s rule

ISimp(f) =
h

6
(f0 + 4f1/2 + 2f1 + 4f3/2 + 2f2 + . . .+ 4fn−1/2 + fn).

Closed quadrature formula. Order: 4 (convergence and exactness).
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Composite Simpson’s rula

Thm. 130. The error of the composite Simpson’s rule for functions f ∈ C4[a, b] is

I(f)− ISimp(f) = −(b− a)h4

2880
f (4)(η),

where η ∈ (a, b).

Rmk. In the case of a given partition:

ISimp(f) =
Itrap(f) + 2Imid(f)

3
.

Rmk. All the above quadrature formulas tend to the exact integral for Riemann
integrable functions as h→ 0.
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Gaussian quadrature
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Gaussian quadrature

We have used equidistant nodes so far. We have seen, however, that these set of
nodes are not efficient in interpolation problems.
We are looking for a better solution.

Is(f) :=

∫ b

a
s(x)f(x) dx ≈

n∑
k=0

akfk =: In,s(f),

where a ≤ x0 < x1 < . . . < xn ≤ b are arbitrary nodes and s is a positive weight
function.

If the quadrature formula is an interpolation quadrature formula, then we have

ak =

∫ b

a
s(x)lk(x) dx

and the quadrature formula is exact for Pn.

How to choose the nodes to make the order of the exactness as large as
possible?
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Gaussian quadrature

Thm. 131. The interpolation quadrature formula

In,s(f) =

n∑
k=0

akfk

is exact for Pn+m if and only if∫ b

a
wn+1(x)s(x)p(x) dx = 0

for all p ∈ Pm−1.

Rmk. The formula cannot be exact for P2n+2. To see this, let us take p = wn+1. From
the inequality ∫ b

a
s(x)w2

n+1(x) dx = 0

we have wn+1 ≡ 0, which shows a contradiction.
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Gaussian quadrature

Def. 132. Let f, g ∈ C[a, b]. We call these functions orthogonal on the interval
[a, b] with respect to the positive weight function s, if∫ b

a
s(x)f(x)g(x) dx = 0.

Thm. 133. Let us suppose that the polynomials p0, p1, . . . (the subscript denotes
the degree of the polynomial) are pairwise orthogonal on [a, b] with respect to the
weight function s. Then all the zeros of these polynomials are real, single and lie in
the interval [a, b].

Construction of the Gaussian quadrature formulas: We orthogonalize the
polynomials 1, x, . . . with respect to the weight function: p0, p1, . . .. We define the
zeros of these polynomials (x0, . . . , xn) to be the nodes of the quadrature formula. We

calculate the quadrature weights as ak =
∫ b
a s(x)lk(x) dx.

Then the form of the quadrature formula is

In,s(f) =

n∑
k=0

akf(xk).
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Gaussian quadrature

Legendre polynomials (s(x) = 1, [−1, 1]): p0 = 1, p1 = x, p2 = x2 − 1/3, etc.

Chebishev polynomials (s(x) = 1/
√

1− x2, [−1, 1]): p0 = 1, p1 = x, p2 = x2 − 1/2,
p3 = x3 − 3x/4 etc.

Example. Let us construct the three-point Gauss–Chebyshev quadrature formula!
The zeros of p3 are 0 and ±

√
3/2. These are the nodes. The weights

a0 =

∫ 1

−1

x(x−
√

3/2)

−
√

3/2(−
√

3/2−
√

3/2)

1√
1− x2

dx = π/3,

similarly a1 = a2 = π/3. Thus the formula is:∫ 1

−1

f(x)√
1− x2

dx ≈ π

3
(f(−

√
3/2) + f(0) + f(

√
3/2)).
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Gaussian quadrature

Some nodes and weights of Gaussian quadrature.

Gauss–Legendre Gauss–Chebyshev

s(x) = 1 s(x) = 1/
√

1− x2

Nr. of points Nodes Weights Nodes Weights

1 0 2 0 π

2 −1√
3
, 1√

3
1,1 −1√

2
, 1√

2
π
2 ,

π
2

3 −
√

3
5 , 0,

√
3
5

5
9 ,

8
9 ,

5
9

−
√

3
2 , 0,

√
3

2
π
3 ,

π
3 ,

π
3
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