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Course description

I Contact: e-mail: rhorvath@math.bme.hu, Office: H.24/b

I Course webpage: anal.math.bme.hu/appnum

I Consultations: office hours: Thursdays 16-17, or by appointment via e-mail

I Course requirements: see the course webpage.

I Lecture notes:
- slides of the lecture
- assignments for homework
- Books:
Laurene V. Fausett, Applied Numerical Analysis Using Matlab, Pearson Prentice
Hall, 2008
W. Cheney, D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole,
Cangage learning, 2013
Steven C. Chapra, Applied Numerical Methods with MATLAB - for engineers and
scientists, McGraw Hill, 2008
- Catch up with Matlab:
https://www.mathworks.com/moler/chapters.html

https://web.stanford.edu/class/ee254/software/using_ml.pdf
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Introduction

”Numerical analysis is the study of algorithms for the problems of continuous
mathematics.” (Lloyd N. Trefethen, 1992)

It constructs algorithms and analyses them from the point of view of accuracy,
efficiency and its behavior during computer realization.

Problems of continuous mathematics come from different disciplines. They are the
mathematical models of e.g. physical, biological, chemical or economical problems.
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Introduction

Model construction:

The real problem
↓

Scientific model
↓

Mathematical (continuous) model

↓
Numerical (discrete) model

↓
Computer model
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Example of the pendulum motion

Problem: Compute the period
of a pendulum.

Sci. mod.: Neglect the
weight of the string and the
drag. Apply the energy
conservation principle:
1
2ml

2(φ′(t))2 +mgl(1−
cosφ(t)) = mgl(1− cosα).

Math. mod.: The differential equation for the angular velocity:

φ′(t) = ±
√

2g

l

√
cosφ(t)− cosα

The period must be computed from this equation.
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Example of the pendulum motion

∫ T/4

0

φ′(t)

−
√

2g
l

√
cosφ(t)− cosα

dt = T/4.

Changing the variable:

T = 2
√

2

√
l

g

∫ α

0

1√
cosφ− cosα

dφ

= 4

√
l

g

∫ π/2

0

1√
1− sin2(α/2) sin2 ϑ

dϑ.

The value of the integral cannot be given in closed form (sinϑ = sin(φ/2)/ sin(α/2)).

Num. mod.: Let us use numerical integration formulas (see later).

Comp. mod.: l = 1m, g = 9.8m/s2

T = 2.008035541s (α = 5◦), T = 2.369049722s (α = 90◦).
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Example of the pendulum motion

Other approach: Let us develop the Taylor series of the function 1/
√

1− x about
x = 0, and let us apply the series at the point sin2(α/2) sin2 ϑ, then let us integrate
the formula:

T = 2π

√
l

g

(
1 +

1

4
sin2 α

2
+ . . .

)
.

If we suppose that the initial angular displacement is small, then we obtain the period
formula

T ≈ 2π

√
l

g
.

This is independent of α. In the example we obtain T = 2.007089923s.
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Possible error sources
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Possible error sources

The real problem

↓ model error, measurement (inherited) error

Scientific model

↓ expression error

Mathematical model

↓ discretization error

Numerical model

↓ rounding error, truncation error

Computer model
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Measuring the error with norms
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Vector, matrix and function norms

It is highly recommended here to review the summary section about normed spaces →
page 359.

If x, y are two elements in a normed space V , then their distance can be measured
with the number ‖x− y‖.

In Rn we use the following vector norms (x = [x1, . . . , xn]T ):

I ‖x‖1 = |x1|+ · · ·+ |xn| (octahedron norm),

I ‖x‖2 =
√
x2

1 + · · ·+ x2
n (Euclidean norm),

I ‖x‖∞ = max{|x1|, . . . , |xn|} (maximum norm, p→∞).

Norms on Rn×n are called matrix norms. (For the special properties of matrices see
the summary section → page 372) Matrix norms can be defined from vector norms
with the expression

‖A‖ := sup
x 6=o

‖Ax‖
‖x‖

. (1)

This is the so-called induced matrix norm
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Vector, matrix and function norms

Thm. 1. Suppose that the matrix norm ‖.‖ was induced by the vector norm ‖.‖.
Then

I ‖Ax‖ ≤ ‖A‖ · ‖x‖, ∀x ∈ Rn (consistency),

I ‖I‖ = 1 (I is the identity matrix),

I ‖AB‖ ≤ ‖A‖ · ‖B‖ (submultiplicity).

Proof. It follows directly from the definition of an induced matrix norm.

Thm. 2. The vector norms induce the following matrix norms:

I p = 1: ‖A‖1 = maxj=1,...,n
∑m

i=1 |aij |,
I p =∞: ‖A‖∞ = maxi=1,...,m

∑n
j=1 |aij |,

I p = 2: ‖A‖2 =
√
%(ATA) (%: spectral radius).

Proof. The 1-norm case is proven as an exercise.
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Vector, matrix and function norms

Rmk. In the case of symmetric matrices A ∈ Rn×n, we have ‖A‖2 = %(A).

Rmk. The matrix norm ‖A‖ = maxi,j{|aij |} is not an induced norm. The so-called

Frobenius norm ‖A‖F =
√∑

i,j a
2
ij is not an induced norm, too.

The space of the continuous functions defined on [a, b] is denoted with C[a, b]. The
usual norm of this space, the maximum norm, is defined as follows

‖f‖C[a,b] = max
x∈[a,b]

{|f(x)|}.
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Norms and eigenvalues

Thm. 3. For quadratic matrices, the estimation %(A) ≤ ‖A‖ is satisfied in any
induced norm.

Proof.: Let x 6= 0 be an eigenvector of A and λ be the corresponding eigenvaluue.
Then |λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖.

Thm. 4. Let A ∈ Rn×n be a given matrix. Then for any positive ε > 0, there exists
an induced norm ‖.‖, such that ‖A‖ ≤ %(A) + ε.

Thm. 5. Let A ∈ Rn×n be a given matrix. Ak tends to 0 elementwise if and only
if %(A) < 1. Exactly in the same case, the series

∞∑
k=0

Ak

converges, moreover its sum is (I−A)−1.
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Norms and eigenvalues

Thm. 6. If the relation ‖A‖ < 1 is valid for the matrix A ∈ Rn×n in some induced
norm, then the following estimation holds

1

1 + ‖A‖
≤ ‖(I−A)−1‖ ≤ 1

1− ‖A‖
.

Proof: It follows from the previous theorem that the matrix I−A is non-singular.

I = (I−A)(I−A)−1 ⇒ 1 ≤ ‖I−A‖‖(I−A)−1‖

≤ (1 + ‖A‖)‖(I−A)−1‖ ⇒ estimation on the left hand side.

Let us multiply both sides of the equality I = I−A + A with the inverse of I−A,
then take the norms on both sides.

‖(I−A)−1‖ ≤ 1 + ‖(I−A)−1‖ ‖A‖,

and after reordering we obtain the inequality on the right hand side.
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Speed of convergence

19 / 390



Speed of convergence

In iterative methods, the solution is the limit of a specially constructed sequence.
Nonlinear equations cannot be solve with direct methods in general. In this case we
use iterative methods, that is we generate a sequence that is convergent and its limit is
the solution of the equation.

Let us consider the sequence xk → x?. Let ek = xk − x? be the error of the kth
element.

Def. 7. We say that the order of the convergence of the sequence {xk} is the
positive real number p if the limit

lim
k→∞

‖ek+1‖
‖ek‖p

= C 6= 0

exists, it is finite and non-zero.

Rmk. If the order of convergence can be defined for a sequence, then it is unique.
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Speed of convergence

Rmk. If p = 1, then the convergence is linear. If 1 < p < 2, then the convergence is
superlinear. The case p = 2 means second order of convergence.

Rmk. If we have a sequence with convergence order p, then for large k values we have
the approximation

‖ek+1‖ ≈ C‖ek‖p.

The logarithm of the equation is

log ‖ek+1‖ ≈ logC + p log ‖ek‖.

If we graph log ‖ek+1‖ against log ‖ek‖, the points falls on a line with slope p that
intersects the vertical axis at logC.

This method can be used to check the order of convergence of a sequence (or a
method that produces the sequence) empirically.

Example. Both xk+1 = xk − (2/5)(x2
k − 2) and yk+1 = yk − (y2

k − 2)/2/yk
(x0 = y0 = 3) tend to

√
2. The first one is order 1 and the second one is order 2.
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Machine number format and its corollaries
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Some simple examples

MATLAB results:

I tan(π/2) = 1.6331e+ 016

I 2−1074/2 = 0

I 2−1074 = 4.94066e− 324; 2−1074 · 1.2 = 4.94066e− 324

I 10310 =Inf

I Let yk denote the semiperimeter of a regular polygon with 2k edges inscribed into
a circle with radius 1. Then yk → π, if k →∞. Moreover we have the recursion

yk+1 = 2k+1

√
1

2

(
1−

√
1− (2−kyk)2

)
,

where y1 = 2, y2 = 2
√

2, ... , y10 = 3.14158627, y12 = 3.14166137, ...,
y19 = 3.70727600, ... Does not tend to π!
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Some simple examples
MATLAB results:

I Calculate the following expression in different ways!

y = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with a = 77617 és b = 33096.
- Matlab double precision: y = −1.1806e+ 21
- Matlab double precision without exponents (a2 = a ∗ a, etc.): y = 1.1726
- Matlab single precision: y = −6.3383e+ 29
- Matlab single precision without exponents (a2 = a ∗ a, etc.): y = 6.3383e+ 29
- Correct answer:

z = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2)

= −7917111340668961361101134701524942850

x = 5.5b8 = 7917111340668961361101134701524942848

y = z + x+
a

2b
= −2 +

77617

2 · 33096
= −0.827396059946821
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Representation of real numbers in floating point systems

(Konrad Zuse, Berlin, 1930s)

±bk
(a0

b0
+
a1

b1
+
a2

b2
+ · · ·+ ap−1

bp−1

)
≡ a0.a1a2 . . . ap−1 × bk

I b: base of the representation

I p: the number of the digits in the mantissa

I k: exponent or characteristic

I 0 ≤ ai < b integers, (i = 0, . . . , p− 1)

I If a0 6= 0 then the number is in normal form. This is a unique representation.

Illustrative example
http://www.binaryconvert.com/result_double.html?decimal=048046049
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Representation of real numbers in floating point systems

In the floating point number system we have:

I Only finite number of rational numbers.

I The numbers do not form a field (e.g. the addition is not associative). (Ex.:
123.4 + 0.04 + 0.03 + 0.02 + 0.01 in different orders in the case p = 4, b = 10,
kmax = 2 )

I The numbers form a bounded set. In the previous example, the largest number is
999.9 (overflow)

I Around zero, there is a relatively large space. The smallest positive representable
number in normal form is 0.01. Without the normal form restriction: 0.00001
(underflow).

I The smallest number that is larger then 1 is denoted by 1 + εm, where εm is the
so-called machine epsilon. In the example: 0.001.
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Double precision floating point numbers

64 bits, binary number system

I The 1. bit stores the sign of the number (0 = +, 1 = −).

I The bits 2-12. store the characteristic such that we add 1023 to the exponent and
we store the binary version of that number (from −1022 to 1023). The
characteristic -1023 stores the 0 (if the mantissa is zero) or indicates that the
number is not in normal form (0.a1 . . . a52 × 2−1022). The characteristic coded
with all 1s is used for special purposes (mantissa is not zero - NaN, mantissa is
zero - ±Inf (depending on the sign bit)).

I The bits 13-64. store the mantissa (the part after the binary point).
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Double precision floating point numbers
The largest exactly representable positive number

M = 1. 111 . . . 111︸ ︷︷ ︸
52 numbers

×21023 = 1.79769× 10308

and the smallest positive exactly representable number

m = 0. 000 . . . 000︸ ︷︷ ︸
51 numbers

1× 2−1022 = 4.94066× 10−324.

The smallest positive exactly representable number in normal form

ε0 = 1. 000 . . . 000︸ ︷︷ ︸
52 numbers

×2−1022 = 2.22507× 10−308.

The smallest exactly representable number next to 1

1. 000 . . . 000︸ ︷︷ ︸
51 numbers

1× 20,

which is greater than 1 with εm = 2−52 = 2.22× 10−16
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Rounding to floating points

Thm. 8. Let 0 < x ≤M . Then

|fl(x)− x| ≤

{
m/2, if x < m/2,
εm|x|

2 , if m/2 ≤ x ≤M .

Proof: The first part is trivial. Let us suppose that x is between the floating point
numbers xi and xj . Let the number of the digits of the mantissa of xi be p and the
characteristic k. Then

|fl(x)− x| ≤ xj − xi
2

=
b−p+1bk

2
≤ εm|x|

2
.

The relative error if m/2 ≤ x ≤M is

|fl(x)− x|
|x|

≤ εm
2

=: u machine precision.
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Catastrophic cancellation

This happens by the subtraction of two numbers that are close to each other:

Example. The case of the sequence that should tend to π. The problem can be
eliminated with the following reformulation of the iteration:

yk+1 = yk

√
2

1 +
√

1− (2−kyk)2
.

Example.

√
9876 = 9.937806599× 101,

√
9875 = 9.937303457× 101, error = 10−8%

↓
√

9876−
√

9875 = 0.000503142× 101 = 5.03142 0000︸ ︷︷ ︸
no information

×10−3

error=10−4%
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Catastrophic cancellation

Better solution: √
9876−

√
9875 =

1√
9876 +

√
9875

= 0.005031418679 = 5.031418679× 10−3

Catastrophic cancellation can occur in those cases when the result is much smaller
than the absolute values of the terms summed up.

Example.

ex = lim
n→∞

n∑
i=0

xi

i!

Let x = −25. Then e−25 ≈ 1.388794× 10−11. The limit of the above sequence
according to Matlab is 8.086559× 10−7.
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Operation count

If floating point operations are the dominant cost then the computation time is
proportional to the number of mathematical operations. This is measured in flops. 1
flop is one floating point operation (−,+, ∗, /).

Def. 9. We say that the sequence {an} is of order O(nα) (α > 0) (n→∞), if there
are constants n0 > 0 and K > 0 such that |an| ≤ Knα if n ≥ n0. Notation:
an = O(nα).
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Introduction to the solution of systems of

linear algebraic equations
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Systems of linear algebraic equations
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Systems of linear algebraic equations (SLAEs)

I General form (aij , bi are known, find the values xj)

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

I Vector form
x1a1 + · · ·+ xnan = b

I Matrix form
Ax = b

Thm. 10. A SLAE is solvable iff r(A) = r(A|b). If it is solvable and r(A) < n,
then it has infinitely many solutions, if r(A) = n, then the solution is unique.
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Sensibility of the solution
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The relative error of the solution

Thm. 11. Let us suppose that, instead of the system Ax = b, we solve the system
(A + δA)y = b + δb. The solution is written in the form y = x + δx. Moreover,
let us suppose that ‖δA‖ < 1/‖A−1‖ in some induced norm. Then the following
estimation is true

‖δx‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖/‖A‖
·
(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
where κ(A) = ‖A‖‖A−1‖.

Proof. Since ‖δA‖ < 1/‖A−1‖, the estimation ‖A−1δA‖ < 1 holds. Thus, in view of
the equality A + δA = A(I−A−1δA) the matrix A + δA is regular (Theorem 5.).
Moreover,

δx = (A + δA)−1(b + δb)− x = (A + δA)−1(b + δb− (A + δA)x)

= (A + δA)−1(δb− δAx) = (I + A−1δA)−1A−1(δb− δAx).
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The relative error of the solution

Let us apply Theorem 6.

‖δx‖ ≤ ‖A−1‖
1− ‖A−1δA‖

(‖δb‖+ ‖δA‖ · ‖x‖)

=
‖A−1‖ · ‖A‖

1− ‖A−1δA‖

(
‖δb‖
‖A‖

+
‖δA‖ · ‖x‖
‖A‖

)
.

We obtain
‖δx‖
‖x‖

≤ ‖A
−1‖ · ‖A‖

1− ‖A−1δA‖

(
‖δb‖
‖A‖ · ‖x‖

+
‖δA‖
‖A‖

)
≤ κ(A)

1− κ(A)‖δA‖/‖A‖
·
(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
.
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Condition number of matrices
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Condition number of matrices

Let us notice that if the coefficients of a SLAE are changed with a small amount, then
the solution can change with a relatively large amount if the parameter κ(A) is large.

Def. 12. Let A ∈ Rn×n be a regular matrix. Then the number
κ(A) = ‖A‖ · ‖A−1‖ is called the condition number of the matrix. (Its value
depends also on the norm!)

The properties of the condition number in induced norm:

I κ(A) ≥ 1 (1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖ · ‖A−1‖),

I κ(A) = κ(A−1),

I κ(αA) = κ(A), α 6= 0,

I For orthogonal matrices: κ2(A) = 1 (‖A‖2 = ‖A−1‖2 = 1),

I For symmetric matrices: κ(A) ≥ |λmax/λmin|, moreover κ2(A) = |λmax/λmin|
(λmax, λmin: eigenvalues with the maximal and minimal absolute value).
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Hilbert matrix

This is an example for a very badly conditioned matrix:

Hilbert matrix: Hn ∈ Rn×n, (Hn)i,j = 1/(i+ j − 1).

H6 =



1 1/2 1/3 1/4 1/5 1/6
1/2 1/3 1/4 1/5 1/6 1/7
1/3 1/4 1/5 1/6 1/7 1/8
1/4 1/5 1/6 1/7 1/8 1/9
1/5 1/6 1/7 1/8 1/9 1/10
1/6 1/7 1/8 1/9 1/10 1/11


Example. κ2(H6) ≈ 1.6× 107, κ2(H10) ≈ 3.5× 1013.
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Solution methods of SLAEs
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Solution methods of SLAEs

I Direct methods: They give exact solutions in finitely many steps. (Cramer’s rule
xi = detAi/detA (Ai-t can be obtained by changing the ith column of A to b),
x = A−1b, Gaussian method and its variants)

I Iterative methods: they form a vector sequence that tends to the solution of the
system (Gauss–Seidel, Jacobi, SOR). Important question is that when to step the
iteration process.
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Direct methods of SLAEs
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Gaussian method
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Gaussian method

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

an1x1 + · · ·+ annxn = bn
Carl Friedrich Gauss
(1777-1855)

Possible transformations that do not alter the solution:

I Multiplication of one equation with a constant (6= 0).

I Addition of one equation to another one.

I Interchange of two equations.

I Interchange of two unknowns.
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Gaussian method

The coefficient matrix and the right hand side of the system:

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
a31 a32 . . . a3n b3

...
an1 an2 . . . ann bn
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Gaussian method

The initial matrix of the elimination [A(1)|b(1)
]:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

a
(1)
21 a

(1)
22 . . . a

(1)
2n b

(1)
2

a
(1)
31 a

(1)
32 . . . a

(1)
3n b

(1)
3

...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn b

(1)
n
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Gaussian method

The elimination of the first column:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

a
(1)
21 a

(1)
22 . . . a

(1)
2n b

(1)
2

a
(1)
31 a

(1)
32 . . . a

(1)
3n b

(1)
3

...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn b

(1)
n

l21 = a
(1)
21 /a

(1)
11 , . . . , ln1 = a

(1)
n1 /a

(1)
11
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Gaussian method

The elimination of the first column:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(1)
22 − l21a

(1)
12 . . . a

(1)
2n − l21a

(1)
1n b

(1)
2 − l21b1

0 a
(1)
32 − l31a

(1)
12 . . . a

(1)
3n − l31a

(1)
1n b

(1)
3 − l31b1

...

0 a
(1)
n2 − ln1a

(1)
12 . . . a

(1)
nn − ln1a

(1)
1n b

(1)
n − ln1b1
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Gaussian method

The elimination of the first column [A(2)|b(2)
]:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 a
(2)
32 . . . a

(2)
3n b

(2)
3

...

0 a
(2)
n2 . . . a

(2)
nn b

(2)
n
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Gaussian method

The elimination of the second column:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 a
(2)
32 . . . a

(2)
3n b

(2)
3

...

0 a
(2)
n2 . . . a

(2)
nn b

(2)
n

l32 = a
(2)
32 /a

(2)
22 , . . . , ln2 = a

(2)
n2 /a

(2)
22
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Gaussian method

The elimination of the second column:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 0 . . . a
(2)
3n − l32a

(2)
2n b

(2)
3 − l32b

(2)
2

...

0 0 . . . a
(2)
nn − ln2a

(2)
2n b

(2)
n − ln2b

(2)
2
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Gaussian method

The elimination of the second column [A(3)|b(3)
]:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 0 . . . a
(3)
3n b

(3)
3

...

0 0 . . . a
(3)
nn b

(3)
n
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Gaussian method

After the elimination of the (n− 1)st column, we obtain the form [A(n)|b(n)
]:

a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

0 0 . . . a
(3)
3n b

(3)
3

...

0 0 . . . a
(n)
nn b

(n)
n
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Gaussian method

Back substitution:

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1n xn = b

(1)
1

a
(2)
22 x2 + · · ·+ a

(2)
2n xn = b

(2)
2

...

a
(n)
nn xn = b

(n)
n

56 / 390



Gaussian method

Back substitution:

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1n xn = b

(1)
1

a
(2)
22 x2 + · · ·+ a

(2)
2n xn = b

(2)
2

...

a
(n)
nn xn = b

(n)
n

→ xn = b
(n)
n /a

(n)
nn
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Gaussian method

Back substitution:

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1n xn = b

(1)
1

a
(2)
22 x2 + · · ·+ a

(2)
2n xn = b

(2)
2

→ x2 = (b
(2)
2 − xna

(2)
2n − · · · − x3a

(2)
23 )/a

(2)
22

...

a
(n)
nn xn = b

(n)
n

→ xn = b
(n)
n /a

(n)
nn
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Gaussian method

Back substitution:

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1n xn = b

(1)
1

→ x1 = (b
(1)
1 − xna

(1)
1n − · · · − x2a

(1)
12 )/a

(1)
11

a
(2)
22 x2 + · · ·+ a

(2)
2n xn = b

(2)
2

→ x2 = (b
(2)
2 − xna

(2)
2n − · · · − x3a

(2)
23 )/a

(2)
22

...

a
(n)
nn xn = b

(n)
n

→ xn = b
(n)
n /a

(n)
nn
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Gaussian method

The procedure can be carried out in the present form only if the constants

a
(1)
11 , . . . , a

(n)
nn , the so-called pivot elements are not zeros.

The two phases of the algorithm:

I Elimination process

I Back substitution (solution of a SLAE with a triangular coefficient matrix)

Example. Solve the SLAE.

x1 + 1/2x2 + 1/3x3 = 11/6
1/2x1 + 1/3x2 + 1/4x3 = 13/12
1/3x1 + 1/4x2 + 1/5x3 = 47/60

Solution: x1 = x2 = x3 = 1.
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Investigation of the Gaussian method

61 / 390



The algorithm of the Gaussian method

Gaussian method, SLAE given with the matrix [A|b] = [āij ]n×(n+1).

for k:=1:n-1 do
for i:=k+1:n do
lik := āik/ākk
for j:=k+1:n+1 do
āij := āij − lik · ākj

end for
end for

end for
xn := ān,n+1/ānn
for k:=n-1:-1:1 do
xk := āk,n+1

for j:=k+1:n do
xk := xk − ākj · xj

end for
xk := xk/ākk

end for
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Gaussian transformation

Let lk = [0, . . . , 0, lk+1,k, . . . , ln,k]
T ∈ Rn (k = 1, . . . , n− 1). Then the kth step of the

Gaussian elimination can be written as the matrix multiplication from left with the
matrix Lk := I− lke

T
k .

It is easy to see that (I− lke
T
k )−1 = I + lke

T
k .
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The performance of the Gaussian method

Thm. 13. The Gaussian method can be performed with the previous algorithm iff
all leading principal minors of A are non-zero, that is det(A(1 : k, 1 : k)) 6= 0
(k = 1, . . . , n).

Proof: During the Gaussian elimination process we add some rows of the matrix to
other rows. This procedure does not modify the determinant of the matrix. Thus

det(A(1 : 1, 1 : 1)) = det(A(1)(1 : 1, 1 : 1)) = a
(1)
11 6= 0,

det(A(1 : 2, 1 : 2)) = det(A(2)(1 : 2, 1 : 2)) = a
(1)
11 a

(2)
22 6= 0,

...

det(A(1 : n, 1 : n)) = det(A(n)(1 : n, 1 : n)) = a
(1)
11 a

(2)
22 . . . a

(n)
nn 6= 0.

(We need the last condition because of the back substitution.)
This implies the statement. .
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Performance of the Gaussian method

Thm. 14. If the coefficient matrix A of the SLAE

I has a strictly dominant diagonal,

I is symmetric positive definite,

I M -matrix,

then the Gaussian method can be realized with the previous algorithm.

We introduce M-matrices.

Def. 15. We call a matrix A ∈ Rn×n to be an M -matrix if all its offdiagonal
elements are nonpositive, it is regular and A−1 ≥ 0.

Example.

A =


2 −1 0

−1 2 −1

0 −1 2

 , A−1 =


3/4 1/2 1/4

1/2 1 1/2

1/4 1/2 3/4

 .
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Performance of the Gaussian method - M-matrices

Thm. 16. The elements of the main diagonal of an M-matrix are positive.

Proof: If aii ≤ 0, then Aei ≤ 0. In this case ei ≤ 0, because A−1 ≥ 0, which is a
contradiction.

Thm. 17. If A is an M-matrix, then there is a positive vector g > 0 such that
Ag > 0.

Proof: Let e = [1, . . . , 1]T . Then g = A−1e is a good choice because all elements are
positive and Ag = AA−1e = e > 0.

The converse of the theorem is also true in the following form.

Thm. 18. If a vector g > 0 exists with the property Ag > 0 and the offdiagonal of
A is non-positive, then A is an M-matrix.
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Performance of the Gaussian method - M-matrices

Thm. 19. Let A be an M-matrix and g a vector for which the condition of the
above theorem is valid. Then

‖A−1‖∞ ≤
‖g‖∞

mini(Ag)i
.

Proof: Let Ag = y > 0. Then

(min
i
yi)‖A−1‖∞ ≤ ‖A−1y‖∞ = ‖g‖∞,

from which the statement follows directly.
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Operation count for the Gaussian method

68 / 390



Operation count

Operation count for the elimination:

2(n− 1)n(2n− 1)

6
+

3(n− 1)n

2

=
4n3 + 3n2 − 7n

6
=

2

3
n3 +O(n2) flop

Operation count for the back substitution: 1 + 3 + · · ·+ 2n− 1 = n2 flop

Altogether:
2

3
n3 +O(n2)

For large matrices the number of operations for the back substitution is negligible
compared to that for the elimination.

69 / 390



Operation count

For triangular matrices: n2 (only back substitution).

For tridiagonal matrices: 8n− 7.

Rmk. If we computed the solution x with the formula x = A−1b (suppose that we
know the inverse somehow), then the number of operations would be 2n2 − n.
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LU decomposition
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LU decomposition

Thm. 20. Let us suppose that for the matrix A the condition
det(A(1 : k, 1 : k)) 6= 0 (k = 1, . . . , n− 1) is fulfilled, that is the Gaussian
elimination method can be performed for this matrix. Then there exist a normed
lower triangular matrix L (lower) (1s are in the main diagonal) and an upper
triangular matrix U such that A = LU (LU decomposition). If the regular matrix
A has an LU decomposition, then the decomposition is unique, moreover
det(A) = u11 . . . unn.

Proof: During the Gaussian elimination process the Gaussian transformations change
the matrix A as follows:

Ln−1Ln−2 . . .L1A = U,

where U is the upper triangular matrix obtained after the elimination process.
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LU decomposition

Because (I− lke
T
k )−1 = I + lke

T
k and lke

T
k lle

T
l = 0 if l > k, the matrix A can be

written in the form

A = L−1
1 . . .L−1

n−2L
−1
n−1U =

(
n−1∏
k=1

(I + lke
T
k )

)
U

=

(
I +

n−1∑
k=1

lke
T
k

)
︸ ︷︷ ︸

lower normed triang. matrix

U = LU.

The calculation of the determinant of the matrix A:

det(A) = det(L)det(U) = u11 . . . unn.
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LU decomposition

Uniqueness:
Let us suppose that there are two different decompositions: A = L̃Ũ = LU. Then

L̃−1L = ŨU−1 = I,

because the product of normed lower triangular matrices is normed lower triangular
and similar statement is true for upper triangular matrices.

Rmk. The matrix U is the upper triangular matrix that is formed during the
elimination process, matrix L is the matrix of the lij coefficients

L =


1 0 . . . 0
l21 1 . . . 0
l31 l32 . . . 0
...
ln1 ln2 . . . 1

 .

Corollary: If one of the leading principal minors of a regular matrix is zero, then the
matrix does not have LU decomposition.
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LU decomposition

Example. 
1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5

 =


1 0 0

1/2 1 0

1/3 1 1




1 1/2 1/3

0 1/12 1/12

0 0 1
180



Remarks:

I If we have computed the LU decomposition of A, then the matrices L and U can
be stored in the computer memory in the place of A. The SLAE Ax = b can be
solved with the solution of two SLAEs with triangular coefficient matrices.
Operation: 2n2 << 2n3/3.

I We generally do not calculate the inverse of matrices! If we need to do this, then
we can perform this task with the expression U−1L−1 or using the Gauss–Jordan
method. The number of operations is 2n3 +O(h2) in both cases.
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Pivoting
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Pivoting

The Gauss method can be performed only if the pivot elements are not zero. What

should we do if a
(k)
kk is zero?

I Let us choose a non-zero element from the column A(k + 1 : n, k). Let us denote
the row index of this element by s. Let us swap the kth and the sth rows (change
of indexes), then let us continue the elimination.

I If there is no non-zero element in the column A(k + 1 : n, k), then the first k
columns are linearly dependent, thus det(A) = 0. In this case there is no unique
solution.

I Partial pivoting: It can be a good idea to decrease the elements of L in absolute

value. In view of the form lsk = a
(k)
sk /a

(k)
kk , the error can be decreased by choosing

the largest element in absolute value to be the pivot element. The number of the
required operations is (n2 − n)/2 comparisons.
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Pivoting

I Full pivoting: In the kth step we choose the greatest element in absolute value
from the sub-matrix A(k : n, k : n). This is
n(n+ 1)(2n+ 1)/6− 1 = n3/3 +O(n2) comparisons.

Let us consider the problem, and let us round to 4 significant digits.

0.003x1 + 59.14x2 = 59.17
5.291x1 − 6.13x2 = 46.78

Exact solution x1 = 10.00, x2 = 1.000. Without pivoting, we obtain x1 = −10,
x2 = 1.001 (cancellation), with partial pivoting we obtain the exact solution.
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LDMT decomposition
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LDMT decomposition

Thm. 21. Let us suppose that all leading principal minors of A are non-zero. Then
there exist the unique normed lower triangular matrices L and M and the diagonal
matrix D such that A = LDMT .

Proof: The LU decomposition is performable. Let D be such that dii = uii(6= 0).
Then the matrix M = (D−1U)T is a normed lower triangular matrix. Moreover
LD(D−1U) = LU = A. The uniqueness follows from the uniqueness of the LU
decomposition.

Thm. 22. For symmetric matrices A, there exists a unique normed lower
triangular matrix L and a diagonal matrix D such that A = LDLT .

Proof: The matrix M−1AM−> = M−1LD is symmetric and lower triangular ⇒
diagonal. det(D) 6= 0 ⇒ M−1L is also diagonal but also normed lower triangular.
That is M−1L = I, and M = L.
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Cholesky decomposition
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Cholesky decomposition

Thm. 23. Let us suppose that A is a symmetric and positive definite matrix. Then
there exist a unique lower triangular matrix G with positive diagonal such that
A = GGT .

Proof: The matrix A can be written uniquely in the form A = LDLT . The diagonal
matrix D has positive diagonal. Let G = L · diag(

√
d11, . . . ,

√
dnn), which is a lower

triangular matrix with positive diagonal. Moreover GGT = A.

Rmk. In practice, the Cholesky decomposition is not calculated with the above
expression but the elements of G are calculated directly from above and from left by
the help of the expression A = GGT . The number of operations is n3/3 +O(n2) flop
+ n square root.

André-Louis Cholesky, 1875–1918, French
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Iterative solutions of SLAEs
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Linear iterative methods
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When do we use iterative methods?

We would like to define a linear iteration

xk+1 = Bxk + f , k = 0, 1, . . .

such that the limit of the vector sequence is the solution of the system Ax = b.

The number of operations in one iteration step is 2n2 flop. Thus, we can perform n/3
iteration steps in order to not to exceed the number of operations of the Gaussian
method. The method is mainly used for sparse matrices, when the number of nonzero
elements is O(n) (e.g. band matrices).

Questions:

I When does the sequence converge to the solution?

I How fast is the convergence?

I How to choose the matrix B and the vectors f , x0?

I When to stop the iteration?
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Convergence of iterative methods

Because of the inequality

‖Bx′ − f − (Bx′′ − f)‖ ≤ ‖B‖ · ‖x′ − x′‖

and the Banach fixed point theorem (page 364), if ‖B‖ < 1 in some induced norm (⇔
%(B) < 1), and the solution x? of the system is a fixed point of the map x 7→ Bx + f
then starting the iteration from an arbitrary vector, it will tend to the solution of the
system. Moreover

‖xk − x?‖ ≤ ‖B‖k

1− ‖B‖
‖x1 − x0‖.

Rmk. The smaller the spectral radius the faster the convergence.
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The construction of the iteration

The iteration can be constructed as follows. Let A = S−T and let S be nonsingular.
Then

Ax = b → (S−T)x = b → x = S−1Tx + S−1b.

xk+1 = S−1T︸ ︷︷ ︸
B

xk + S−1b︸ ︷︷ ︸
f

.

The matrix S is called preconditioner. Because B = I− S−1A, a good preconditioner
must be

I close to A, hence the norm of B can be small in this case (see later).

I and easily invertible.

Example.

I S = A: it is close to A but the computation of its inverse is as difficult as that of
A. The method converges in one step.

I S = I: inverse is easy, but it has nothing to do with A.
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Jacobi iteration
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Jacobi iteration

Let A = D− L−R, where D is the diagonal matrix of A (suppose that there are no
zeros in the diagonal). L is the matrix of the elements below the diagonal, while R is
constructed from the elements above the diagonal, and both multiplied by −1. Let
S = D and T = R + L.

Def. 24. The iteration

xk+1 = D−1(L + R)︸ ︷︷ ︸
:=BJ

xk + D−1b

constructed with the above splitting (x0 is arbitrary) is called Jacobi iteration.
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Jacobi iteration

Carl Gustav Jacob Jacobi (1804-1851, German)

Componentwise:

(xk+1)i = − 1

aii

 n∑
j=1, 6=i

aij(xk)j − bi

 , i = 1, . . . , n.
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Gauss–Seidel iteration
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Gauss–Seidel iteration

Let us modify the previous iteration! Let us use the newly computed components!

(xk+1)i = − 1

aii

 i−1∑
j=1

aij(xk+1)j +

n∑
j=i+1

aij(xk)j − bi

 .

Matrix form:
xk+1 = D−1(Lxk+1 + Rxk + b),

that is
xk+1 = (D− L)−1R︸ ︷︷ ︸

BGS

xk + (D− L)−1b.

Def. 25. The iteration constructed with

the splitting S = D− L, T = R (x0 is
arbitrary) is called Gauss–Seidel
iteration. Philipp Ludwig von

Seidel (1821-1896, German)
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Comparison of the Jacobi and Gauss–Seidel iterations

The Gauss–Seidel seems to be better, because we always use the updated components,
but if

A =


1 1/2 1

1/2 1 1

−2 2 1


then

BJ =


0 −1/2 −1

−1/2 0 −1

2 −2 0

 , BGS


0 −1/2 −1

0 1/4 −1/2

0 −3/2 −1

 .
Thus %(BJ) = 1/2 < 1 and %(BGS) = | − 3/8−

√
73/8| ≈ 1.443 > 1.
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Relaxation methods
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Relaxation methods

The Jacobi method fulfills the equality:

(xk+1)i = (xk)i + (xk+1)i − (xk)i.

The main idea of the relaxation for the Jacobi method:

(x̃k+1)i = (x̃k)i + ω((x̃k+1)i,J − (x̃k)i), 0 6= ω ∈ R,

where (x̃0)i = (x0)i, (x̃k+1)i,J is the value where the Jacobi method would step from

(x̃
k
)i (i = 1, . . . , n), and ω is a so-called relaxation parameter.

Main goal: how to choose ω in order to make the convergence faster?

I ω = 1: we get back the Jacobi iteration.

I 0 < ω < 1: under-relaxation.

I ω > 1: over-relaxation.
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JOR method (Jacobi over-relaxation, J(ω))

The componentwise form of the JOR method (without˜):

(xk+1)i = (xk)i + ω

− 1

aii

 n∑
j=1, 6=i

aij(xk)j − bi

− (xk)i


= (1− ω)(xk)i −

ω

aii

 n∑
j=1,j 6=i

aij(xk)j − bi

 .
Thus we arrive at the vector form

xk+1 = ((1− ω)I + ωD−1(L + R))︸ ︷︷ ︸
BJ(ω)

xk + ωD−1b,

where the iteration matrix is

BJ(ω) = ωBJ + (1− ω)I. (2)
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SOR method (Successive over-relaxation, GS(ω))

This method is the relaxation of the Gauss–Seidel method:

We apply the relaxation elementwise:

(xk+1)i = (1− ω)(xk)i −
ω

aii

 i−1∑
j=1

aij(xk+1)j +

n∑
j=i+1

aij(xk)j − bi

 .
In matrix form:

xk+1 = (D− ωL)−1((1− ω)D + ωR)︸ ︷︷ ︸
BGS(ω)

xk + ω(D− ωL)−1b.
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Convergence

98 / 390



Convergence of regular splitting

Def. 26. The splitting A = S−T of the matrix A ∈ Rn×n is called regular
splitting, if S is non-singular, S−1 ≥ 0 and T ≥ 0.

Thm. 27. If A = S−T is a regular splitting of a non-singular matrix A ∈ Rn×n
with the property A−1 ≥ 0 then %(S−1T) < 1.

Thm. 28. Let A = D− L−R (with the previous splitting), where we have
L + R ≥ 0. Then the matrix A has a regular splitting A = S−T with the
property %(S−1T) < 1 iff A is an M-matrix.
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Convergence of the Jacobi and Gauss–Seidel iterations

Thm. 29. For M-matrices, the J, J(ω), GS and GS(ω) (ω ∈ (0, 1]) methods are all
convergent.

Proof. If A is an M-matrix then A−1 ≥ 0. In the case of the JOR method, the choice

S =
1

ω
D, T =

1− ω
ω

D + L + R

gives a regular splitting for ω ∈ (0, 1]. Thus the iteration is convergent based on the
previous theorem.
In the case of the SOR method, the choice

S =
1

ω
D− L, T =

1− ω
ω

D + R

gives regular splitting for all ω ∈ (0, 1]. The case ω = 1 gives back the Jacobi and
Gauss–Seidel methods.
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Convergence of the Jacobi and Gauss–Seidel iterations

Thm. 30. For matrices with strictly dominant diagonal, the Jacobi iteration is
convergent. (Similar theorem is true for the Gauss–Seidel iteration.)

Proof.

%(BJ) ≤ ‖BJ‖∞ = max
i=1,...,n

n∑
j=1,j 6=i

|aij |
|aii|

< 1.

Thm. 31. If A is symmetric and positive definite then the Gauss–Seidel iteration is
convergent.

Thm. 32. [Ostrowski, Reich] If A is symmetric, positive definite and ω ∈ (0, 2) then

%(BGS(ω)) < 1,

that is the SOR method is convergent.

Thm. 33. [Kahan] For the SOR method we have

%(BGS(ω)) ≥ |1− ω|,

that is the necessary condition of the convergence is ω ∈ (0, 2).
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Stopping conditions
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Stopping conditions

When to stop the iteration?

I If ‖B‖ < 1 in some norm, then based on the Banach fixed point theorem we have

‖xk − x?‖ ≤ ‖B‖k

1− ‖B‖
‖x1 − x0‖.

From the value ‖B‖ and the result of the first iteration step, we can calculate that
how many iteration we need to achieve a prescribed accuracy in a certain norm.

I Consider the results of two consecutive iterations. If ‖xk+1 − xk‖ is sufficiently
small then we stop the iteration.

I We compute the so-called residuals: rk = b−Axk. If ‖rk‖/‖r0‖ is sufficiently
small then we stop the iteration.

I We fix a value kmax where we stop the iteration at all events.
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QR decomposition
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Householder reflection
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Householder reflection

How can we give the reflection image of a vector x across a line through the origin
that is perpendicular to the vector v in R2?

x′ = x− 2vTx

vTv
v = x− 2vvTx

vTv
= (I− 2vvT

vTv
)x.
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Householder reflection

Let v ∈ Rn be an arbitrary nonzero vector. Then the multiplication with the matrix

H = I− 2vvT

vTv

reflects each vector x to the plain that goes through the origin and perpendicular to
the vector v.

Thm. 34. H is a symmetric and orthogonal matrix.

Proof. The symmetry is trivial.(
I− 2vvT

vTv

)(
I− 2vvT

vTv

)
= I− 4

vvT

vTv
+ 4

vvT

vTv

vvT

vTv
= I.
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Householder reflection

Question: How to choose the vector v to reflect the vector x to the axis x1, that is
parallel to the vector e1?

Hx︸︷︷︸
∈lin(e1)

= x− 2vTx

vTv
v,

thus v ∈ lin(x, e1). Let v = x + αe1.
Then

Hx = x− 2(xT + αeT1 )x

(x + αe1)T (x + αe1)
(x + αe1)

= x− 2
xTx + αx1

xTx + 2αx1 + α2
x− α2vTx

vTv
e1

=

(
1− 2

‖x‖22 + αx1

‖x‖22 + 2αx1 + α2

)
x− α2vTx

vTv
e1.

If α = ±‖x‖2 then the coefficient of x is zero.
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Householder reflection

Thus, if a vector x 6= 0 is given then v = x± ‖x‖2e1 is a good choice. Then

Hx = ∓‖x‖2
2(x± ‖x‖2e1)Tx

(x± ‖x‖2e1)T (x± ‖x‖2e1)
e1

= ∓‖x‖2
2‖x‖22 ± 2‖x‖2x1

2‖x‖22 ± 2‖x‖2x1
e1 = ∓‖x‖2e1.

Def. 35. The reflection matrix H that reflects a given vector x through a plane
that goes through the origin such a way that the reflection is on the first
coordinate axis, is called Householder reflection (that belongs to the vector x).

Application: Based on the above considerations, the Householder reflection that
belongs to the vector x can be determined as follows:
- We determine the normal vector of the plane of reflection: v = x± ‖x‖2e1,
- then we construct the reflection matrix with the vector v:

H = I− 2vvT

vTv
.
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Householder reflection

Hx = H


∗
∗
...
∗

 =


∗
0
...
0

 .
Rmk. If x1 6= 0 then it is practical to choose the normal vector as
v = x + sgn(x1)‖x‖2e1.

Rmk. It is practical to norm the vector v such that the first element of the vector will
be 1. Then v can be stored in the place of the eliminated elements of x.

Rmk. Let C be an arbitrary matrix. Then the calculation of HC can be performed as
follows:

HC =

(
I− 2vvT

vTv

)
C = C− 2vvT

vTv
C

= C + v

(
−2vTC

vTv

)
︸ ︷︷ ︸

=:wT

= C + vwT .
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QR decomposition
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QR decomposition

Thm. 36. Let A ∈ Rm×n (m ≥ n) be a full rank matrix. Then there exists an
orthogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n such
that A = QR.

Proof. Let H1 be the Householder reflection that belongs to the column A(1 : m, 1).
Then the 2 : m elements of the first column of A(2) := H1A are zero. Let H̃2 be the
Householder reflection that belongs to the column A(2)(2 : m, 2). Moreover, let
H2 = diag(1, H̃2). Then the 2 : m elements of the first column of A(3) := H2A

(2)

and the 3 : m elements of the second column are zero, etc. Based on the full rank, this
procedure can be continued further. We obtain the representation

Hn · · · · ·H1 ·A = R,

where R is an upper triangular matrix. The matrix QT := Hn · · · · ·H1 is orthogonal,
so with the above notations we have A = QR.
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Givens rotation
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Givens rotation

Rotation with angle θ in R2.

x′ =

[
cos θ − sin θ
sin θ cos θ

]
x.

This matrix is orthogonal. Moreover with the choice s = sin θ and c = cos θ, the
vector [x1, x2]T (x1 6= 0) is transformed to the form [∗, 0]T .
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Givens rotation

I If x2 = 0 then s = 0, c = 1 is a good choice.
I If x2 6= 0 then from the solution of the SLAE sx1 + cx2 = 0, s2 + c2 = 1 we

obtain the parameters

s =
±x2√
x2

1 + x2
2

, c =
∓x1√
x2

1 + x2
2

.

Generally: rotation in the hyperplane (i, j) with angle θ

G(i, j, θ) =



1
. . .

c −s
1

. . .

1
s c

. . .

1


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Application of the Givens rotation

QR decomposition (schematically):
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

→

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

→

∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

→

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0


Rmk. The number of operations of the Householder QR decomposition is
2n2(m− n/3), while for the Givens QR decomposition we have 3n2(m− n/3).
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Application of Givens rotation

The QR decomposition of an upper Hessenberg matrix (schematically):
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0


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Householder and Givens

,

Alston Scott Householder, 1904-1993 (USA), Wallace Givens, 1910-1993 (USA)
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Solution of full rank over-determined
systems
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Solution of over-determined systems
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Over-determined systems

Ax = b, A ∈ Rm×n, m ≥ n, r(A) = n

The above system generally does not have solution (or only one). Then we can search
for the vector x (denoted by xLS) that minimizes the norm ‖Ax− b‖22.
Let

φ(x) = ‖Ax− b‖22,

and let z ∈ Rn be an arbitrary vector. Because of the full column rank, ‖Az‖2 = 0 can
hold only if z = 0. Then

φ(x + z) = ‖A(x + z)− b‖22

= ‖Ax− b‖22 + ‖Az‖22 + 2zTAT (Ax− b).

Let xLS be the solution of the SLAE ATAx = ATb (zTATAz = ‖Az‖22 6= 0
provided that z 6= 0, thus ATA is SPD, thus it is non-singular). Then

φ(xLS + z) = ‖AxLS − b‖22 + ‖Az‖22 = φ(xLS) + ‖Az‖22,

that shows that xLS uniquely minimizes φ indeed.
121 / 390



Over-determined systems

We have to solve the so-called normal equation

ATAx = ATb.

It has unique solution due to the full rank, thus the solution can be written in the form

xLS = (ATA)−1ATb. This is not efficient in practice.

Computation of xLS with the normal equation

I ATA is SPD.

I Let us compute its Cholesky decomposition LLT .

I Let us solve the system Ly = ATb.

I We get xLS as the solution of LTx = y.

Number of operations: (m+ n/3)n2 flop
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Over-determined systems

Computation of xLS with QR decomposition

‖Ax− b‖22 = ‖QRx− b‖22 = ‖QT (QRx− b)‖22
= ‖Rx−QTb‖22 = ‖R1x− c‖22 + ‖d‖22,

where R1 = R(1 : n, 1 : n), c = (QTb)(1 : n, :), d = (QTb)(n+ 1 : m, :).

I Compute the QR decomposition of A.

I Determine the matrix R1 = R(1 : n, 1 : n).

I Determine the vector c = (QTb)(1 : n, :).

I xLS is the solution of the SLAE R1x = c.

Number of operations: 2(m− n/3)n2 flop
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Over-determined systems

Rmk.

I If m >> n then the number of operations of the solution with the QR
decomposition is approximately the double of that of the other.

I For quadratic full rank matrices, the number of operations is the same in both
cases: 4n3/3, which is the double of that of the Gaussian method. When we take
into the account also the memory usage, then the total solution time may be
comparable with that of the Gaussian method, moreover, in this case there is no
growth factor, that is the method is stable.

I We cannot use these methods for (nearly) rank deficient matrices.

I For the normal equation, we can use the CG method but the condition number of
the new system will be the square of that of the original system.
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Eigenvalue problems
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The power method
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The idea of the power method

Let A ∈ Rn×n be a normal matrix, and let us suppose that A has a strictly dominant
eigenvalue, that is

|λ1| > |λ2| ≥ . . . |λn|.

Then the eigenvalue λ1 ∈ R and the corresponding eigenvector v1 can be chosen to be
real. Let v1, . . . ,vn be the normed eigenvectors, and because A is normal, they form
an orthonormal basis. Let x ∈ Rn be such that α1 6= 0 (α1 ∈ R) is not zero in the
form x = α1v1 + α2v2 + · · ·+ αnvn.

Then
Akx = α1λ

k
1v1 + α2λ

k
2v2 + · · ·+ αnλ

k
nvn

= λk1

α1v1 + α2

(
λ2

λ1

)k
v2︸ ︷︷ ︸

→0

+ · · ·+ αn

(
λn
λ1

)k
vn︸ ︷︷ ︸

→0

 .
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The power method

The power method, vT1 y(0) 6= 0, ‖y(0)‖2 = 1

for k := 1 : kmax do
x(k) := Ay(k−1)

y(k) := x(k)/‖x(k)‖2
ν(k) := (y(k))TAy(k)

end for

Thm. 37.

y(k) =
Aky(0)

‖Aky(0)‖2
,

ν(k) → λ1, moreover there exists a sequence {γk} ⊂ R such that |γk| = 1
(k = 1, . . . ) and

γky
(k) → v1.
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The power method

Proof.
The first part can be proven with induction.
Parseval’s equality: ‖x‖2 =

√∑n
i=1 |αi|2.

Namely:

xHx =

(
n∑
i=1

αiv
H
i

)(
n∑
i=1

αivi

)
=

n∑
i=1

|αi|2.

Let y(0) = α1v1 + α2v2 + · · ·+ αnvn and we know that α1 6= 0. Hence

y(k) =

λk1

(
α1v1 + α2

(
λ2
λ1

)k
v2 + · · ·+ αn

(
λn
λ1

)k
vn

)
√∑n

i=1 |αi|2|λi|2k

=

λk1α1

(
v1 + α2

α1

(
λ2
λ1

)k
v2 + · · ·+ αn

α1

(
λn
λ1

)k
vn

)
|λ1|k|α1|

√
1 +

∑n
i=2 |

αi
α1
|2|| λiλ1 |

2k
.
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The power method

Thus
=:γk︷ ︸︸ ︷

|λ1|k|α1|
λk1α1

y(k)

=

(
v1 + α2

α1

(
λ2
λ1

)k
v2 + · · ·+ αn

α1

(
λn
λ1

)k
vn

)
√

1 +
∑n

i=2 |
αi
α1
|2|| λiλ1 |

2k
→ v1,

where |γk| = 1 (k = 1, . . . ).

0← (γky
(k))TA(γky

(k))− vT1 Av1 = |γk|2(y(k))TAy(k) − λ1

= (y(k))TAy(k) − λ1 = ν(k) − λ1.
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The power method

Rmk.

I If λ1, α1 > 0, then y(k) → v1.

I If λ1 > 0, α1 < 0, then −y(k) → v1.

I If λ1 < 0, α1 > 0, then (−1)ky(k) → v1.

I If λ1 < 0, α1 < 0, then (−1)k+1y(k) → v1.

Rmk. Let e(k) = y(k) − v1 be the error of the kth iteration vector. Then, for
sufficiently large values k we have ‖e(k+1)‖2 ≈ |λ2/λ1|‖e(k)‖2 (linear convergence).

Rmk. If x is an approximation of the eigenvector that belongs to the dominant
eigenvalue of A, then we have xT (Ax) ≈ xT (λx) and

λ ≈ xTAx

xTx

is an approximation of the eigenvalue.
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Rayleigh’s coefficient
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Rayleigh’s coefficient

Def. 38. Let 0 6= x ∈ Rn, A ∈ Rn×n. The number

R(x) =
xTAx

xTx

is called the Rayleigh’s coefficient to the vector x.

Thm. 39. Let the 0 6= x ∈ Rn be a given vector. Then

min
α∈R
‖Ax− αx‖2 = ‖Ax−R(x)x‖2.

Proof.
‖Ax− αx‖22 = (xTAT − αxT )(Ax− αx)

= xTATAx− 2αxTAx + α2xTx

= α2xTx− 2αxTAx + xTATAx.
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Rayleigh’s coefficient

Because xTx > 0 if x 6= 0, hence the function takes its minimum at

αmin =
xTAx

xTx
= R(x).

Rmk. For symmetric matrices

λmin ≤ R(x) ≤ λmax.

Rmk. For symmetric matrices

λmax = max
x∈Rn 6=0

R(x), λmin = min
x∈Rn 6=0

R(x)

(Courant-Fischer theorem).

From now on, we will consider only symmetric matrices in the eigenvalue problems!
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Inverse iteration
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Inverse iteration

Let A ∈ Rn×n be a non-singular symmetric matrix with the eigenvalues λi and with
the eigenvectors vi. Then, if µ 6= λi, then the matrix A− µI is invertible and the
eigenvectors of (A− µI)−1 are identical with those of A, its eigenvalues are
(λi − µ)−1.

If the number µ is sufficiently close to λj , then the dominant eigenvalue will be
(λj − µ)−1, thus executing the power method with the matrix (A− µI)−1, λj and vj
can be approximated.
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Inverse iteration

Inverse iteration, vT1 y(0) 6= 0, ‖y(0)‖2 = 1

for k := 1 : kmax do
x(k) := (A− µI)−1y(k−1)

(solution of (A− µI)x(k) = y(k−1))
y(k) := x(k)/‖x(k)‖2
ν(k) := (y(k))TAy(k)

end for

Rmk.

I First we compute the LU-decomposition of the matrix A− µI. This makes
possible to solve the system with 2n2 flops in each iteration.

I Much more expensive than the power method, but it can converge to any
eigenvalue.

I The condition vT1 y(0) 6= 0 is not too strict. If it does not hold initially, then it will
be satisfied after sufficiently large number of iterations due to the rounding errors.
Thus, the method will converge in this case, too.
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Approximation of eigenvalues and eigenvectors
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Rank deflation
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Rank deflation

I Let us suppose that we have computed already the strictly dominant eigenvalue
λ1 and the corresponding eigenvector v1 of the matrix A ∈ Rn×n.

I Let us consider the matrix A− λ1v1v
T
1 . The eigenvalues of this matrix equal the

eigenvalues of A, with the only difference that zero stands instead of λ1. The
eigenvectors are the same.

I When λ2 is strictly dominant, then executing the power method with the above
matrix, we can obtain λ2 and v2.
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QR-iteration
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QR-iteration

Main idea: If we could find a matrix V to the matrix A such that V−1AV is an
upper triangular matrix, then the diagonal of this upper triangular matrix would
contain the eigenvalues of the matrix. Unfortunately such a matrix V cannot be
constructed directly.

Let us approximate this matrix with the orthogonal matrices of the QR decomposition.

QR iteration, A is a given symmetric matrix, A(0) := A

for k := 1 : kmax do
Construct the QR decomposition of A(k−1): A(k−1) = Q(k−1)R(k−1)

A(k) := (Q(k−1))TA(k−1)Q(k−1) = R(k−1)Q(k−1)

end for
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QR iteration

Thus
A(k) = (Q(k−1))T . . . (Q(0))TA Q(0) . . .Q(k−1)︸ ︷︷ ︸

=:Qk

= QT
kAQk,

and the eigenvalues of A(k) will be the same as the eigenvalues of A.

Thm. 40. a) If all the eigenvalues of A are real and different in absolute values,
then the matrix sequence {A(k)} tends to an upper triangular matrix.
b) If all the eigenvalues of a symmetric matrix A are different in absolute values,
then the matrix sequence {A(k)} tends to a diagonal matrix.

Rmk. In both cases the eigenvalues appear in the diagonal of the limit matrix.
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Remarks

Rmk. Let A = QR be an upper Hessenberg matrix. Then the matrix

A(1) = QTAQ = QTQRQ = RQ = RQRR−1 = RAR−1

is also upper Hessenberg.

Rmk. Every QR decomposition is 4n3/3 flops, thus the method converges very slowly.
The solution for this can be the conversion of the original matrix to Hessenberg form,
e.g. with Householder reflections (4n3/3 flop, the eigenvalues do not change):
A→ H1AH1 → H2H1AH1H2, etc., schematically

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗


For Hessenberg matrices, the QR decomposition can be performed with Givens
rotations very fast (3n2 flop).

Rmk. For symmetric matrices the Hessenberg form will be tridiagonal.
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Solution of nonlinear equations
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Nonlinear equations
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Nonlinear equations

Example. x2 = 4 sinx. Find the real solutions.

Example. x = cosx. Find the real solutions.

Example. x5 − 4x4 + x3 − x2 + 4x− 4 = 0. Find the real solutions. There is no
solution formula that computes the roots from the coefficients.

Problem: We do not know whether the equation is solvable and how many solution
does the equation have.
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Separation of the roots

Thm. 41. (Bolzano) If a continuous function satisfies the conditions f(a) · f(b) < 0
(a < b), then there exists a constant c ∈ (a, b) such that f(c) = 0.

Rmk. We calculate the function values at certain points, and if the values have
different sign at neighbouring points then there is a root between these points.

Rmk. If the function is strictly monotone on a certain interval and there is a root in
the interval, then the root is unique.

Rmk. It can be helpful if we draw the graphs of the functions. E.g. we draw the graphs
of the left and the right hand side functions, and fix the interval which the intersection
located in.
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Polynomials
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Evaluating polynomials

Horner’s scheme (William George Horner (1786-1837, British))

anx
n + . . .+ a1x+ a0 = (. . . ((anx+ an−1)x+ an−2) . . .)x+ a0

Rmk. There are altogether n additions in the formula. In 1954, Ostrowski proved that
we need at least n additions to evaluate a polynomial.

Rmk. Victor Pan proved a similar theorem for the number of the multiplications in
1966.

Thm. 42. The roots of the polynomial p(x) = anx
n + . . .+ a1x+ a0 (an, a0 6= 0)

are located in the two circle rings centred in the origin with radius R = 1 +A/|an|
and r = 1/(1 +B/|a0|), where

A = max{|an−1|, . . . , |a0|}, B = max{|an|, . . . , |a1|}.

Rmk. In case of p(x) = x5 − 4x4 + x3 − x2 + 4x− 4 we have 1/2 ≤ |xk| ≤ 5.
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Bisection method

151 / 390



Bisection method

f(x) = 0 −→ Find the root x?.

xk → x?
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Bisection method

Bisection method, a < b and f are given, f(a) < 0 < f(b).

for k := 1 : kmax do
x := a+ (b− a)/2
f := f(x)
if f = 0 then

end
else

if f > 0 then
b = x

else
a = x

end if
end if

end for
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Bisection method

Rmk. Convergence order cannot be defined. But it is true the estimation

|ek| ≤
b− a
2k+1

.

This shows that we can expect one digit improvement after 3 steps.

Rmk. When we use only mantissas with two digits then we compute
(0.67 + 0.69)/2 = 1.36/2 ≈ 1.4/2 = 0.7, which is not between the two numbers. But
0.67 + (0.69− 0.67)/2 = 0.67 + 0.02/2 = 0.67 + 0.01 = 0.68.

Rmk. If the function has more than one roots then the method will surely find one of
them.

Rmk. Other stopping conditions:

|xk − xk−1|
|xk−1|

≤ tol., |f(xk)| ≤ tol.
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Newton’s method
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Newton’s method

Newton (1669), Raphson (1690)

Newton’s method, x0 and f are given.

x := x0

for k := 1 : kmax do
x := x− 1

f ′(x)f(x)

if f(x) = 0 then
end

end if
end for
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Newton’s method

157 / 390



Newton’s method

Thm. 43. (Monotone convergence theorem) Let us suppose that f ∈ C2 and that
the first and the second derivatives of the function do not have zeros in the closed
interval determined by the points x? and x0, moreover f(x0) · f ′′(x0) > 0. Then
the sequence {xk} generated by the Newton’s method tends to x? monotonically.

Proof: Let x0 > x? és f(x0) > 0, f ′′(x0) > 0 (f ′(x) > 0). We can see from the
iteration

xk+1 = xk −
f(xk)

f ′(xk)

that xk+1 ≤ xk, that is the sequence is monotonically decreasing. It follows from the
strict convexity that xk ≥ x?. Thus the sequence is convergent. Let us denote the
limit with x̄?.
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Newton’s method

Then

xk+1︸︷︷︸
→x̄?

= xk︸︷︷︸
→x̄?

−

→f(x̄?)︷ ︸︸ ︷
f(xk)

f ′(xk)︸ ︷︷ ︸
→f ′(x̄?)

,

which implies that x̄? = x?.

Thm. 44. Under the conditions of the previous theorem, the convergence of {xk} is
of second order, moreover if |f ′(x)| ≥ m1 > 0 and |f ′′(x)| ≤M2 <∞ in the interval
determined by the points x0 and x? with appropriately chosen constants m1 and
M2, then it is valid the estimation

|ek+1| ≤
M2

2m1
|ek|2.
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Newton’s method

Proof: Let us use Taylor’s expansion around the point xk:

0 = f(x?) = f(xk) + f ′(xk)(x
? − xk) +

1

2
f ′′(ξ)(x? − xk)2,

where ξ falls between x? and xk. From the reordering of the Newton’s iteration:

0 = f(xk) + f ′(xk)(xk+1 − xk).

After subtraction:

0 = f ′(xk)(xk+1) − x?)−
1

2
f ′′(ξ)(x? − xk)2.

Finally

|f ′(xk)| · |ek+1| =
1

2
|f ′′(ξ)| · |ek|2.
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Newton’s method

Thus

lim
k→∞

|ek+1|
|ek|2

=
|f ′′(x?)|
2|f ′(x?)|

,

which shows that the order of the convergence is second order, indeed. Moreover

|ek+1| =
|f ′′(ξ)|

2|f ′(xk)|
· |ek|2 ≤

M2

2m1
|ek|2.

Rmk. Newton’s method can be applied combined with the bisection method. First we
approaches the root with the bisection method in order to fulfil the conditions of the
above theorems, then we switch to Newton’s method in order to accelerate the
convergence.
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A simple error estimation

Let us use Taylor’s expansion around the point xk:

0 = f(x?) = f(xk) + f ′(ξ)(x? − xk),

where ξ is between the points xk and x?.

Thus

|x? − xk| =
|f(xk)|
|f ′(ξ)|

≤ |f(xk)|
m1

.
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Fixed point iterations
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Fixed point iterations

Thm. 45. Let us suppose that the zero x? ∈ [a, b] of the function f is a fixed point
of the function F : [a, b]→ [a, b]. Let us suppose that F is a contraction with
contraction coefficient q. Then the iteration xk+1 = F (xk) converges from arbitrary
initial point x0 ∈ [a, b] to the unique solution of the equation f(x) = 0. Moreover

|xk − x?| ≤
qk

1− q
|x1 − x0|

Proof: The corollary of Banach’s fixed point theorem (see page 364).

Rmk. In certain cases F can be given as F (x) = x− g · f(x), where g is a sufficiently
chosen number that guarantees the contraction of F .
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Fixed point iterations

Rmk. The contraction property can be guaranteed supposing that F is continuous on
[a, b] and differentiable in (a, b), moreover there exists a number 0 ≤ q < 1, for which
we have |F ′(x)| ≤ q, ∀x ∈ (a, b) (Lagrange’s mean value theorem).

Thm. 46. If, in the previous theorem, F is continuously differentiable at least r
times and

F ′(x?) = . . . = F (r−1)(x?) = 0

and F (r)(x?) 6= 0, then the convergence order of the sequence {xk} is r and it is
valid the estimation

|ek+1| ≤
Mr

r!
|ek|r,

where Mr is an upper bound for the absolute value of the rth derivative of the
function.
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Fixed point iterations

Proof: From the Taylor expansion around the point x?, we have

F (xk) = F (x?) +
F (r)(ξ)

r!
(xk − x?)r,

where ξ is between the numbers xk and x?. That is

lim
k→∞

|ek+1|
|ek|r

=
|F (r)(x?)|

r!

that shows the rth order convergence of the method and the required estimation

|ek+1| ≤
Mr

r!
|ek|r.

Rmk. Newton’s method can be written also in a fixed point iteration form with the
choice g(x) = 1/f ′(x). Its second order convergence could be proven also with the
previous theorem.
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Fixed point iterations
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Newton’s method for systems of nonlinear equations

Solve the nonlinear system for the solution x? ∈ Rn

f(x) = 0, f : Rn → Rn.

Example. Find the solution of the system

x2 + y − 5 = 0

x+ y2 − 3 = 0

Let us approximate f around the point xk with its first order Taylor expansion

f(x?)︸ ︷︷ ︸
0

≈ f(xk) + f
′
(xk)(x

? − xk),

where f
′
(xk) is the Jacobian of the function f at the point xk. From this, we can

approximate the solution as

x? ≈ xk −
[
f
′
(xk)

]−1
f(xk).
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Newton’s method for systems of nonlinear equations

Using this approximation recursively, we arrive at an iterative method, the so-called
Newton’s method

xk+1 = xk −
[
f
′
(xk)

]−1
f(xk).

(We solve the system f
′
(xk)y = f(xk) for y then we update as xk+1 = xk − y.)

Example. [
xk+1

yk+1

]
=

[
xk
yk

]
−
[
2xk 1
1 2yk

]−1 [
x2
k + yk − 5
xk + y2

k − 3

]
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Newton’s method for systems of nonlinear equations

Thm. 47. Let us suppose that f is continuously differentiable in a neighbourhood
of x?, moreover let the Jacobians be bounded and Lipschitz continuous here.
Then, when we start the Newton’s iteration sufficiently close to x?, it will converge
to x? quadratically.

Rmk. The solution of a nonlinear system may be obtained also by fixed point iteration.
If the equation f(x) = 0 is equivalent with the equation x = F(x) with a suitably
chosen function F, and the iteration xk+1 = F(xk) converges to x?, then x? is the
solution of f(x) = 0.
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Relations between root-finding and minimization

Solve f(x) = 0 =⇒ find the minimum of the multivariable function ‖f(x)‖

Find the minimum of the multivariable function f(x) =⇒ solve ∇f(x) = 0

Thm. 48. Let us suppose that in a neighbourhood of x? the multivariable function
f : Rn → R is twice continuously differentiable. If the conditions

∇f(x?) = 0, ∇2f(x?) is s.p.d.

are fulfilled, where ∇2f(x?) denotes the Hessian of the function f at the point x?,
then x? is a local minimizer of the function f .

The possible local minimizer x? may be found with the Newton’s method applied to
the equation ∇f(x) = 0 as follows:

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk).
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The interpolation problem
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The problem to solve
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The problem to solve

Let us suppose that we know the values of a function f only at n+ 1 distinct points
(the so-called nodes) ((xi, fi) pairs (i = 0, . . . , n), xi 6= xj , ha i 6= j).

Problem:

I Let us calculate the values of the function at other points;

I Let us calculate the derivative of the function;

I Let us calculate the extremizers of the function;

I Let us calculate its definite integral!

Solution: We give a functions φ with the properties φ(xi) = fi and we use this
function in the calculation instead of the original (unknown) function. The functions φ
are generally chosen to be polynomials, trigonometric polynomials (sin, cos) or
piecewise polynomials.
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Lagrange interpolation
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Interpolation with polynomials

Thm. 49. For all fixed n+ 1 nodes, there exists a unique polynomial Ln with
degree at most n such that Ln(xi) = fi.

Proof: Let us choose the required polynomial to be Ln(x) =
∑n

k=0 akx
k. In order to

satisfy the interpolation property, the following equalities must be valid:

Ln(xi) =

n∑
k=0

akx
k
i = fi (i = 0, . . . , n).

This is a SLAE. Its coefficient matrix is a so-called Vandermonde matrix. Because
xi 6= xj , if i 6= j, its determinant is not zero. Thus, the SLAE can be solved uniquely
for the coefficients.
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Interpolation with polynomials – Lagrangian form

Joseph-Louis Lagrange, 1736-1813, Italian (Giuseppe Lodovico Lagrangia)

Def. 50. For the fixed nodes x0, . . . , xn, the polynomial

lk(x) =
(x− x0) . . . (x− xk−1)(x− xk+1) . . . (x− xn)

(xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)

(k = 0, . . . , n) is called the kth (it belongs to the point xk) characteristic Lagrange
polynomial.
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Interpolation with polynomials – Lagrangian form

Trivially we have

lk(xi) =

{
1, if i = k,

0, if i 6= k.

Rmk. With the notation wn+1(x) = (x− x0) . . . (x− xn) (so-called nodal polynomial)
the kth characteristic Lagrange polynomial can be written in the form

lk(x) =
wn+1(x)

(x− xk) · w′n+1(xk)
.

Lagrange form of the interpolation polynomial:

Ln(x) =
n∑
k=0

fklk(x).

This polynomial trivially has degree at most n and its graph goes through the given
points.
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Interpolation with polynomials – Lagrangian form

Example. Find the interpolation polynomial to the points (0, 2), (1, 1) and (3, 5)!

The characteristic Lagrange polynomials are:

l0(x) =
(x− 1)(x− 3)

(0− 1)(0− 3)
=

1

3
(x− 1)(x− 3),

l1(x) =
(x− 0)(x− 3)

(1− 0)(1− 3)
=
−1

2
x(x− 3),

l2(x) =
(x− 0)(x− 1)

(3− 0)(3− 1)
=

1

6
x(x− 1),

thus the interpolation polynomial is

p2(x) = 2l0(x) + 1l1(x) + 5l2(x) = x2 − 2x+ 2.
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Interpolation error
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Interpolation error

Thm. 51. [Cauchy, 1840] Let the function f ∈ Cn+1 and the nodal points
x0, . . . , xn be given. Let us fix a point x and denote the interval determined by the
nodal points and the point x by Ix. Let us denote the interpolation polynomial of
f determined by the nodal points by Lnf . Then

En(x) := f(x)− (Lnf)(x) =
f (n+1)(ξx)

(n+ 1)!
wn+1(x).

Proof: If x is a nodal point, then the statement is trivial. Otherwise let

G(t) := En(t)− wn+1(t)

wn+1(x)
En(x), t ∈ Ix,

which is a Cn+1 function on the interval Ix. This function has n+ 2 roots.
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Interpolation error

Then the function G′(t) has at least n+ 1 roots, etc., and the function G(n+1)(t) has
at least one root. Let us denote this root by ξx.

G(n+1)(t) = f (n+1)(t)− (n+ 1)!

wn+1(x)
En(x),

thus

G(n+1)(ξx) = f (n+1)(ξx)− (n+ 1)!

wn+1(x)
En(x) = 0,

hence

En(x) =
f (n+1)(ξx)

(n+ 1)!
wn+1(x).
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Interpolation error

Thm. 52. If f ∈ C∞[a, b] and the nodal points x
(n)
0 , . . . , x

(n)
n are chosen from the

interval [a, b] (n = 1, 2, . . .), moreover, if ∃M > 0 such that
maxx∈[a,b]{|f (n)|} ≤Mn, then maxx∈[a,b]{|f(x)− (Lnf)(x)|} → 0 if n→∞.

Proof: We apply the previous theorem:

|En(x)| = |f
(n+1)(ξx)|
(n+ 1)!

|wn+1(x)| ≤ Mn+1

(n+ 1)!
(b− a)n+1 → 0,

if n→∞, even independently of x.

Rmk. We will generally use the notation Mn for an upper bound of max{|f (n)|} on a
predefined interval. Similarly, mn will denote a non-negative lower bound for
min{|f (n)|}.
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Runge’s example

Pl.: (Carl David Tolmé Runge, German, 1856–1927) Let us choose an equidistant
partition of the interval [−5, 5] and let us interpolate the function

f(x) =
1

1 + x2

in these points! Apparently, the interpolation polynomials do not tend to f . The
difference is particularly emphasized at the two ends of the interval.
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Interpolation error

Thm. 53. Let x be in the interval determined by the nodal points x0, . . . , xn. Then
the estimation

|wn+1(x)| ≤ n!

4
hn+1

is true for the nodal polynomial, where h is the greatest difference between the
adjacent points.

Rmk. The estimations for the inner sub-intervals are less then that for the outer
sub-intervals. Thus we can expect that if we choose the nodal point denser close to
the ends of the interval, then the interpolation error can be decreased.

Rmk. Independently of x, we have

|En(x)| ≤ Mn+1

4(n+ 1)
hn+1.
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Chebyshev polynomials

Pafnuty Lvovich Chebyshev, Russian, 1821-1894

Let us consider the polynomials defined with the recursion

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x)

on the interval [−1, 1].

Example. T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.
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Chebyshev polynomials

Thm. 54.
Tn(x) = cos(n · arccosx).

Proof: The statement is trivial for n = 0 and n = 1. Let us assume that the statement
is true for n = k. Then

2x cos(k arccosx)− cos((k − 1) arccosx)

= 2x cos(k arccosx)

−(cos(k arccosx)x+ sin(k arccosx) sin(arccosx))

= x cos(k arccosx)− sin(k arccosx) sin(arccosx)

= cos(arccosx) cos(k arccosx)− sin(k arccosx) sin(arccosx)

= cos((k + 1) arccosx).

Thus the statement is true also for k + 1.
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Chebyshev polynomials
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Chebyshev polynomials

Thm. 55.
|Tn(x)| ≤ 1,

moreover the leading coefficient of Tn(x) is 2n−1.

Proof: Trivial.

Thm. 56. Let T̃n(x) = Tn(x)/2n−1, that is we norm the Chebyshev polynomial to
leading coefficient 1. Then

‖T̃n‖C[−1,1] ≤ ‖p(1)
n ‖C[−1,1],

where p
(1)
n is an arbitrary polynomial with degree at most n and normed to leading

coefficient 1.
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Chebyshev polynomials

Proof: The extremizers of Tn(x) are the points t
(n)
k = cos(kπ/n) (k = 0, . . . , n).

Indeed, Tn(t
(n)
k ) = cos(n arccos(t

(n)
k )) = cos(kπ) = ±1 (alternately). Thus, these

points are the extremizers also of T̃n.

We use reduction to absurdity. Thus, let us suppose that ∃p(1)
n , such that

‖p(1)
n ‖C[−1,1] < ‖T̃n‖C[−1,1].

Then the polynomial q(x) = T̃n(x)− p(1)
n has degree at most n− 1 and the sign of this

polynomial is the same as that of the original polynomial. The polynomial q(x) should
change sign n times, which contradicts to the fact that the polynomial has degree at
most n− 1.
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Chebyshev polynomials

Rmk.

|En(x)| = |f
(n+1)(ξx)|
(n+ 1)!

| (x− x0)(x− x1) . . . (x− xn)︸ ︷︷ ︸
=T̃n+1(x)

|

Let us choose the nodal points to be the roots of the polynomial Tn+1(x), that is the
values

zk = cos

(
(2k + 1)π

2(n+ 1)

)
, k = 0, . . . , n!

In this case we have

|En(x)| ≤ Mn+1

(n+ 1)!

1

2n

independently of x.
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Newton form of the interpolation polynomial

Let the nodes (xi, fi) (i = 0, . . . , n) be given. Let us search for the interpolation
polynomial in the so-called Newton form:

pn(x) = c0

+ c1(x− x0)

+ c2(x− x0)(x− x1)

+ . . .

+ cn(x− x0) . . . (x− xn−1).

Rmk. This is a polynomial of degree at most n. Because the terms are linearly
independent, all polynomials with degree at most n can be uniquely written in this
form. Thus the coefficients ck (k = 0, . . . , n) are uniquely determined.
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Newton’s divided differences

Def. 57. Let be given a function f and the nodal points y0, . . . , yk. Then the
uniquely defined leading coefficient of the interpolation polynomial defined by the
points (y0, f(y0)), . . . , (yk, f(yk)) is called Newton’s divided difference of order k.
Notation: [y0, . . . , yk]f .

Rmk. Trivially, we have [yi]f = f(yi).

Rmk. [y0, . . . , yk]f is uniquely defined and does not depend on the order of the nodal
points y0, . . . , yk.

Thm. 58. If Lk−1 is the interpolation polynomial defined by the points
(x0, f0), . . . , (xk−1, fk−1) and Lk is the interpolation polynomial defined by the
points (x0, f0), . . . , (xk, fk), then the relation

Lk(x) = Lk−1(x) + [x0, . . . , xk]f · (x− x0) . . . (x− xk−1)

is true.
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Newton’s divided differences

Proof: Lk − Lk−1 is a polynomial of degree at most k, and it takes zero value at the
points x0, . . . , xk−1. Moreover its leading coefficient is the same as that of Lk:
[x0, . . . , xk]f . These conditions determine the polynomial

Lk(x)− Lk−1(x) = [x0, . . . , xk]f · (x− x0) . . . (x− xk−1)

uniquely, which gives the statement of the theorem.

Corollary: Based on the previous theorem, the ck coefficients of the Newton form of
the interpolation polynomial can be calculated as ck = [x0, . . . , xk]f .

Thm. 59. The Newton’s divided differences fulfil the recursion formula

[x0, . . . , xk]f =
[x1, . . . , xk]f − [x0, . . . , xk−1]f

xk − x0
.
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Newton’s divided differences

Proof: Let us denote the interpolation polynomial defined by the points
(x1, f1), . . . , (xk, fk) by qk−1. Then

Lk(x) =
x− x0

xk − x0
qk−1(x) +

xk − x
xk − x0

Lk−1(x).

Indeed, this is a polynomial of degree at most k and Lk(xi) = fi (i = 0, . . . , k). The
statement of the theorem follows from the comparison of the leading coefficients. We
have

leading coef. of Lk =
leading coef. of qk−1

xk − x0
− leading coef. of Lk−1

xk − x0
,

that is

[x0, . . . , xk]f =
[x1, . . . , xk]f − [x0, . . . , xk−1]f

xk − x0
.
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Newton form of the interpolation polynomial

Calculation of the coefficients ck:

By the definition we have: [xi]f = fi (i = 0, . . . , n). According to the recursion
formula:

[x0, x1]f =
[x1]f − [x0]f

x1 − x0
, [x1, x2]f =

[x2]f − [x1]f

x2 − x1
,

[x0, x1, x2]f =
[x1, x2]f − [x0, x1]f

x2 − x0
, etc.

Example. Find the interpolation polynomials to the points (0,2), (1,1) és (3,5)! We
construct a so-called Newton’s divided difference table:

xi fi = [xi]f [., .]f [., ., .]f

0 2 = c0

−1 = c1

1 1 1 = c2

2
3 5
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Newton form of the interpolation polynomial

Thus the interpolation polynomial has the form:

2 + (−1)(x− 0) + 1(x− 0)(x− 1) = x2 − 2x+ 2.

For the calculation of the substitution value at a fixed point x we can use a Horner’s
scheme like rewriting:

2 + (−1)(x− 0) + 1(x− 0)(x− 1) = (1(x− 1) + (−1))(x− 0) + 2.

Generally:
Ln(x) = (([x0, . . . , xn]f · (x− xn−1)

+[x0, . . . , xn−1]f) · (x− xn−2)

+[x0, . . . , xn−2]f) · (x− xn−3) . . .+ [x0]f.
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Newton form of the interpolation polynomial

Addition of new nodes is easy: the new table:

xi fi = [xi]f [., .]f [., ., .]f [., ., ., .]f

0 2 = c0

−1 = c1

1 1 1 = c2

2 1/2 = c3

3 5 1/2
1

−1 1

Thus the interpolation polynomial:

2 + (−1)(x− 0) + 1(x− 0)(x− 1) + 1/2(x− 0)(x− 1)(x− 3)

= x3/2− x2 − x/2 + 2.

202 / 390



Comparison of Lagrange’s and Newton’s formulas

Lagrange

I Less accurate.

I The calculation of pn(x) for a fixed x costs 4n2 flop.

I Addition of new nodes is complicated.

I The characteristic Lagrange polynomials lk(x) are independent of the values fk.
Thus, if these values change, then the new interpolation polynomial can be
obtained easily.

Newton

I More accurate.

I 3n2/2 flop is the calculation of the divided differences and additional 3n flop is
the calculation of the function values..

I Addition of new nodes is easy.

I When the function values change, the polynomial must be newly calculated.
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Hermite interpolation
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Hermite interpolation
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Hermite interpolation

Let the different nodal points x0, . . . , xn be given together with the function and
derivative values

f
(0)
0 , f

(1)
0 , . . . , f

(m0)
0 ; . . . ; f (0)

n , f (1)
n , . . . , f (mn)

n .

We would like to find the polynomial p(x) that satisfies the conditions

p(i)(xk) = f
(i)
k , k = 0, . . . , n; i = 0, . . . ,mk.

We have altogether m0 + 1 +m1 + 1 + . . .mn + 1 = n+ 1 +
∑n

k=0mk =: N data.
Thus, we can expect that a polynomial with degree at most N − 1 will be sufficient.

Thm. 60. There exists a unique polynomial HN−1 with degree at most N − 1 that
satisfies the conditions

H
(i)
N−1(xk) = f

(i)
k , k = 0, . . . , n; i = 0, . . . ,mk.
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Hermite interpolation

Proof: Let HN−1(x) = a0 + a1x+ . . .+ aN−1x
N−1. Then we have to solve the SLAE:

 1 x0 x2
0 . . . xN−1

0

0 1 2x0 . . . (N − 1)xN−2
0

...
...

... . . .
...



a0

a1

a2
...

 =


f

(0)
0

f
(1)
0

f
(2)
0
...


We have here N equations and N unknowns, and the coefficient matrix is non-singular.
Indeed, if a non-zero vector existed such that its product with the matrix is a non-zero
vector, then the polynomial HN−1 would have N roots, which is impossible.

Hermite–Fejér interpolation polynomial: At each point only the function value and the
derivative are given (mk = 1, k = 0, . . . , n). The the interpolation polynomial has
degree at most 2n+ 1.
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Hermite–Fejér interpolation

Construction of the interpolation polynomial with divided differences:

[x0, x1]f =
f(x0)

(x0 − x1)
+

f(x1)

(x1 − x0)

Let x1 = x0 + h and suppose that h→ 0. Then

lim
h→0

[x0, x0 + h]f = lim
h→0

(
−f(x0)

h
+
f(x0 + h)

h

)
= f ′(x0).

Example. x0 = 0, x1 = 1, f
(0)
0 = 0, f

(1)
0 = 0, f

(0)
1 = 1 és f

(1)
1 = 3.

xi fi = [xi]f [., .]f [., ., .]f [., ., ., .]f

0 0 = c0

0 = c1

0 0 1 = c2

1 1 = c3

1 1 2
3

1 1

H3(x) = x3
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Spline interpolation
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Spline interpolation - first and second degree splines

Spline = thin and flat bendable wood or metal strip used to draw curves.

When in an interpolation problem the nodes are given, then Chebyshev nodes cannot
be used in order to decrease the interpolation error. In this case we generally
interpolate with piecewise polynomials of lower degree. (The points that determine the
sub-interals are called knots.)

Example. First and second degree splines

First-degree splines : interpolation error =M2h
2/8 (h is the maximum step-size).
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Spline interpolation - cubic splines

Cubic splines. Let us construct a function s defined on the whole interval [x0, xn] that
possesses the following properties:

I s(xk) = fk (k = 0, . . . , n),

I g, g′, g′′ are continuous,

I s|[xi−1,xi] is an at most cubic polynomial (i = 1, . . . , n).

The number of data: 4n.
The number of the conditions: 2n+ 2(n− 1) = 4n− 2.

We may choose two parameters arbitrarily:
a) natural cubic spline: s′′(x0) = s′′(xn) = 0.
b) clamped cubic spline: the values s′(x0) and s′(xn) are fixed.

Thm. 61. There is a unique function s that satisfies the above conditions.
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Construction of the natural cubic splines

For the sake of simplicity let xk − xk−1 = h for all k = 1, . . . , n. Let us consider the
polynomial sk that interpolates on the kth sub-interval.
Let

sk(xk−1) = fk−1, sk(xk) = fk, s
′
k(xk−1) = dk−1, s

′
k(xk) = dk,

where dk−1 and dk are the for now unknown derivatives s′(xk−1) and s′(xk). Let us
apply the Hermite–Fejér interpolation:

xi fi = [xi]f [., .]f [., ., .]f [., ., ., .]f
xk−1 fk−1

dk−1

xk−1 fk−1
fk−fk−1

h2 −
dk−1

h
fk−fk−1

h

(
−2

fk−fk−1

h2 +
dk−1+dk

h

)
/h

xk fk
dk
h
−

fk−fk−1

h2

dk
xk fk

212 / 390



Construction of the natural cubic splines

The polynomial sk and its second derivatives can be obtained. For these we can set
n+ 1 equations: n− 1 equations in the inner points and 2 equations in the end points.
In this way we arrive at the SLAE:

h

3



2 1 0 0 0 . . . 0 0 0
1 4 1 0 0 . . . 0 0 0
0 1 4 1 0 . . . 0 0 0
...
0 0 0 0 0 . . . 1 4 1
0 0 0 0 0 . . . 0 1 2




d0

d1
...
dn

 =


f1 − f0

f2 − f0

f3 − f1
...

fn − fn−1


With the solution of the system for the derivatives dk, the polynomials sk can be
obtained with Hermite–Fejér interpolation.
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Construction of the natural cubic splines

Example. Let us determine the natural cubic interplation of the points (0,1), (1,2) and
(2,0)! The system of equations

1

3

 2 1 0
1 4 1
0 1 2

 d0

d1

d2

 =

 1
−1
−2

 .
We obtain that d0 = 7/4, d1 = −1/2, d2 = −11/4 and the cubic polynomials that
belong to the sub-intervals:

s1(x) = −3

4
x3 +

7

4
x+ 1, s2(x) =

3

4
x3 − 9

2
x2 +

25

4
x− 1

2
.
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Construction of the clamped cubic splines

The SLAE can be obtained similarly to the previous case. Now d0 and dn are fixed,
and modify the system according to this fact.

h

3



4 1 0 0 0 . . . 0 0 0
1 4 1 0 0 . . . 0 0 0
0 1 4 1 0 . . . 0 0 0
...
0 0 0 0 0 . . . 1 4 1
0 0 0 0 0 . . . 0 1 4


 d1

...
dn−1

 =


f2 − f0 − d0h/3

f3 − f1
...

fn−1 − fn−3

fn − fn−2 − dnh/3


With the solution of the system for the derivatives dk, the polynomials sk can be
obtained with Hermite–Fejér interpolation.
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Construction of the clamped cubic splines

Example. Let us determine the clamped cubic spline interpolation to the points (0,1),
(1,2) and (2,0), if s′(0) = 0 and s′(2) = 1!
Thus, d0 = 0 and d2 = 1. The ”SLAE” simplifies to

1

3
4d1 = −1− 1

3
0− 1

3
1,

which gives d1 = −1.

The cubic polynomials that belong to the sub-intervals are:

s1(x) = −3x3 + 4x2 + 1, s2(x) = 4x3 − 17x2 + 21x− 6.
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Properties of cubic splines

Error estimate for cubic splines

Thm. 62. Let f ∈ C4[x0, xn] and let s be the cubic spline interpolating f on an
equidistant mesh (with stepsize h) x0 < x1 < . . . < xn. Then

‖f (r) − s(r)‖C[x0,xn] ≤ Crh4−r‖f (4)‖C[x0,xn], r = 0, 1, 2, 3,

where C0 = 5/384, C1 = 1/24, C2 = 3/8 and C3 = 1.

Minimum norm property of cubic splines

Thm. 63. Let f ∈ C2[a, b] and let s be the cubic spline interpolating f . Then∫ xn

x0

|s′′(x)|2 dx ≤
∫ xn

x0

|f ′′(x)|2 dx,

where equality holds iff f = s.
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Trigonometric interpolation
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Interpolating trigonometric polynomials
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Trigonometric polynomials

When we know that the data are the values of a periodic function, then it is advisable
to interpolate with trigonometric functions instead of polynomials. .

Let us suppose that we know the values (fk) of a 2π periodic function at the points
xk = 2πk/(n+ 1) ∈ [0, 2π) (k = 0, . . . , n), where n is a positive natural number. Let
us search for the interpolating function in the form

tm(x) = a0 +

m∑
j=1

(aj cos(jx) + bj sin(jx)),

which has to satisfy the equalities tm(xk) = fk (k = 0, . . . , n). tm is called
trigonometric polynomial of mth degree.
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Trigonometric polynomials

Thus we have 2m+ 1 coefficients and n+ 1 equations.

I If n is even, then we can expect that a polynomial with degree m = n/2 will be
suitable.

I If n is odd, then introduce the notation m = (n+ 1)/2. Then we have n+ 2
coefficients and n+ 1 equations, that is the system is underdetermined. The term
with the coefficient bm has the following values at the nodes:

bm sin(mxk) = bm sin

(
n+ 1

2

2πk

n+ 1

)
= bm sin(πk) = 0.

Hence, the value of bm can be chosen to be zero. We say that in this case the
trigonometric polynomial (in the case if n is odd) is balanced.
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Interpolation with trigonometric polynomials

Thm. 64. Let us suppose that the fk values (k = 0, . . . , n) are given at the nodes
xk = 2πk/(n+ 1). Let us suppose that n is odd. Then there exists a unique
balanced trigonometric polynomial of degree m = (n+ 1)/2 denoted by tm that
satisfies the interpolation condition tm(xk) = fk (k = 0, . . . , n).

Proof: We will construct the polynomial. We work with complex numbers. Using the
equality eiφ = cosφ+ i sinφ we obtain that

eijx = cos(jx) + i sin(jx), e−ijx = cos(jx)− i sin(jx),

which results in the formulas

cos(jx) =
eijx + e−ijx

2
, sin(jx) =

eijx − e−ijx

2i
.
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Interpolation with trigonometric polynomials

After back substitution to the original polynomial tm and with the use of the
interpolation property we obtain that

fk = tm(xk) = a0 +

m∑
j=1

(
aj
eijxk + e−ijxk

2
+ bj

eijxk − e−ijxk
2i

)

=

=:c0︷︸︸︷
a0 +

m−1∑
j=1


=:cj︷ ︸︸ ︷

aj − bji
2

eijxk +

=:c2m−j︷ ︸︸ ︷
aj + bji

2
e−ijxk



+

=:cm︷︸︸︷
am
2
eimxk +

=:cm︷︸︸︷
am
2
e−imxk︸ ︷︷ ︸

cmeimxk

=

n∑
j=0

cje
ijxk , k = 0, . . . , n.
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Interpolation with trigonometric polynomials

We applied the equality
eimxk = e−imxk = (−1)k.

The original real coefficients can be calculated with the complex coefficients cj :

a0 = c0, am = cm, aj = cj + c2m−j (j = 1, . . . ,m− 1),

bj = i(cj − c2m−j) (j = 1, . . . ,m− 1).

Because fk ∈ R, taking the complex conjugate of both sides we arrive at the form

fk = fk =
n∑
j=0

cje
−ijxk , k = 0, . . . , n,

that is c0, cm ∈ R és c2m−j = cj , thus aj = 2Re(cj) és bj = −2Im(cj)
(j = 1, . . . ,m− 1).
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Interpolation with trigonometric polynomials

Let us introduce the notation

w = e−i2π/(n+1).

w is a (n+ 1)th root of unity, because wn+1 = 1. Moreover,

e−ijxk = wjk

and using this notation we have to solve the SLAE

fk =

n∑
j=0

cjw
−jk, k = 0, . . . , n

for the coefficients cj . We show that this SLAE always has a unique solution, which
fact shows that the trigonometric interpolation polynomial is unique.
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Interpolation with trigonometric polynomials

With the notations

fn+1 = [f0, . . . , fn]T , cn+1 = [c0, . . . , cn]T ,

Fn+1 ∈ R(n+1)×(n+1), (Fn+1)jk = wjk

the SLAE can be written in the form

fn+1 = FH
n+1cn+1.

Lemma. Fn+1F
H
n+1 = (n+ 1)In+1

Proof:
(Fn+1F

H
n+1)kj =

n∑
s=0

wksw−js =

n∑
s=0

ws(k−j) =

=

{
n+1, if j = k,
(wk−j)n+1−1
wk−j−1

= 0, if j 6= k.
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Interpolation with trigonometric polynomials

Let us return to the proof of the theorem. Let us multiply both sides of the SLAE

fn+1 = FH
n+1cn+1

by the matrix Fn+1. We obtain

Fn+1fn+1 = Fn+1F
H
n+1cn+1,

that is the coefficients cj can be calculated uniquely as

cn+1 =
1

n+ 1
Fn+1fn+1.

Let us introduce the notation f̂n+1 := (n+ 1)cn+1.

227 / 390



Interpolation with trigonometric polynomials

Fourier analysis (Discrete Fourier Transform - DFT): We calculate the cj complex
Fourier coefficients from the data

f̂j = (n+ 1)cj =

n∑
k=0

fkw
kj , j = 0, . . . , n.

Fourier synthesis (Inverse Discrete Fourier Transform - IDFT): We calculate the
nodal function values by the help of the Fourier coefficients cj .

1

n+ 1

n∑
j=0

f̂jw
−jk = fk, k = 0, . . . , n.
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Interpolation with trigonometric polynomials

Rmk. If the function values fk are real then c2m−j = cj (j = 1, . . . ,m− 1), that is
these coefficients are complex conjugate of each other, a0 = c0 and am = cm are real
values. Thus aj = 2Re(cj) and bj = −2Im(cj). From this, we obtain

a0 =
1

n+ 1

n∑
k=0

fk, am =
1

n+ 1

n∑
k=0

fk cos(mxk),

aj =
2

n+ 1

n∑
k=0

fk cos(jxk) (j = 1, . . . ,m− 1),

bj =
2

n+ 1

n∑
k=0

fk sin(jxk) (j = 1, . . . ,m− 1).
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Interpolation with trigonometric polynomials

When the number of nodes is odd, then a similar theorem can be proven. The proof is
also similar.

Thm. 65. Let us suppose that the function values fk (k = 0, . . . , n) are given at
the nodes xk = 2πk/(n+ 1). Let us suppose that n is even. Then, there exists a
unique trigonometric polynomial tm with degree m = n/2 such that tm(xk) = fk
(k = 0, . . . , n).

Corollary: In this case the real discrete Fourier coefficients can be calculated as follows

a0 =
1

n+ 1

n∑
k=0

fk,

aj =
2

n+ 1

n∑
k=0

fk cos(jxk) (j = 1, . . . ,m),

bj =
2

n+ 1

n∑
k=0

fk sin(jxk) (j = 1, . . . ,m).
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Interpolation with trigonometric polynomials

Rmk. Let f be a 2π periodic function. Let us search the function in the so-called
Fourier series form

f(x) = α0 +

∞∑
j=1

(αj cos(jx) + βj sin(jx)).

Then it can be shown that

α0 =
1

2π

∫ 2π

0
f(x) dx,

αj =
1

π

∫ 2π

0
f(x) cos(jx) dx

βj =
1

π

∫ 2π

0
f(x) sin(jx) dx.

Let us notice that the discrete Fourier coefficients are the approximations of the
integrals above.
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Interpolation with trigonometric polynomials

Example. f = [0, 1, 4, 9]T , n = 3, m = (n+ 1)/2 = 2, w = e−2iπ/4 = −i.

f̂4 =


1 1 1 1
1 w w2 w3

1 w2 w4 w6

1 w3 w6 w9




0
1
4
9

 =

=


1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i




0
1
4
9

 =


14

−4 + 8i
−6

−4− 8i

 .
Thus a0 = 14/4 = 7/2, a1 = −8/4 = −2, b1 = −16/4 = −4, a2 = −6/4 = −3/2.
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Fast Fourier transform
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Fast Fourier transform (FFT)

The procedure was given already by Gauss in the early 1800s, but his work has been
forgotten. After the advent of the computers the method was newly rediscoverd.
James W. Cooley (IBM), John W. Tukey (Princeton), 1965.

f̂j =

n∑
k=0

fkw
kj , j = 0, . . . , n.

The calculation of the discrete Fourier coefficients requires approximately (n+ 1)2

complex multiplications, provided that the powers of w have been computed already
(each coefficient requires n+ 1 multiplications).

How could we determine these coefficient with much less effort using the
special form of the elements of the matrix.
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Fast Fourier transform (FFT)

Example. In the previous problem we need to calculate the multiplication
1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i




0
1
4
9

 .
Let us swap the columns of the matrix in order to put the odd numbered columns to
the ”left part” of the matrix!

1 1 1 1
1 −1 −i i

1 1 −1 −1
1 −1 i −i




0
4

1
9


Here the two blocks on the left hand side is F2, the lower right block is the opposite of
the upper right one, and the upper right block is[

1 0
0 w

]
F2 =

[
1 0
0 −i

]
F2.
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Fast Fourier transform (FFT)

In fact, we have to calculate only the product of the matrix F2 with the vectors [0, 4]T

and [1, 9]T , moreover the elements of the last product must be multiplied with the
powers of w (w0, w1, w2, . . . , wm−1), respectively.

General case: Let us suppose that n+ 1 is an even number. Then we need to perform
the multiplication

f̂0

f̂1

f̂2
...

f̂m−1

f̂m
f̂m+1

...

f̂n


=



1 1 1 1 1
1 w w2 . . . wn

1 w2 w4 . . . w2n

...
...

... . . .
...

1 wm−1 w2(m−1) . . . w(m−1)n

1 wm w2m . . . wmn

1 w(m+1) w2(m+1) . . . w(m+1)n

...
...

... . . .
...

1 wn w2n . . . wn
2




f0

f1

f2
...
fn

 .
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Fast Fourier transform (FFT)

Let us change the odd numbered columns forward!
Then the elements of the vector f will be also rearranged.

We obtain the product:



1 1 1 1 1 1 1 1

1 w2 . . . wn−1 w w3 . . . wn

1 w4 . . . w2(n−1) w2 w6 . . . w2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 w2(m−1) . . . w(m−1)(n−1) wm−1 w3(m−1) . . . w(m−1)n

1 w2m . . . wm(n−1) wm w3m . . . wmn

1 w2(m+1) . . . w(m+1)(n−1) w(m+1) w3(m+1) . . . w(m+1)n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 w2n . . . wn(n−1) wn w3n . . . wn2





f0
f2
f4
.
.
.

fn−1
f1
f3
.
.
.
fn


.

The upper left block is Fm because w2 is an mth root of unity. The lower left block is
also Fm. This can be checked easily using the fact that w is an (n+ 1)th root of
unity. The upper right block can be written in the form DmFm with the notation
Dm = diag(1, w, w2, . . . , wm−1). The lower right block is the opposite of this.
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Fast Fourier transform (FFT)

When we partition the vector f̂ and the rearranged f (denoted by f̃) accordingly, the
product can be written in the form[

f̂1

f̂2

]
= Fn+1f =

[
Im Dm

Im −Dm

] [
Fm 0
0 Fm

] [
f̃1

f̃2

]
.

What can we win compared to the (n+ 1)2 complex multiplication?
Fmf̃1 and Fmf̃2 require ((n+ 1)/2)2 complex multiplications each. The product of the
diagonal matrix Dm and the vector Fmf̃2 requires (n+ 1)/2 complex multiplicaitons.
We do not need more multiplications. We must perform

2

(
n+ 1

2

)2

+
n+ 1

2

complex multiplications.
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Fast Fourier transform (FFT)

The algorithm become really fast if we use the above procedure in the case of the half
sized matrices, too. This can be done repeatably if n+ 1 is a power of 2.
Let Ql denote the number of complex multiplications of FFT when we use 2l nodes.
Then trivially

Ql = 2Ql−1 + 2l−1

and taking into the account that Q1 = 1, we obtain with induction that

Ql = l2l−1 =
1

2
(n+ 1) log2(n+ 1).

This is a significant drop in the number of operations:

n+ 1 DFT FFT

25 = 32 1024 80
210 = 1024 1048576 5120

220 = 1048576 1099511627776 10485760
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Numerical differentiation
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The formulation of the problem
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The formulation of the problem

Let us suppose that the values of the differentiable function f are known at the points
x0, x±1 = x± h, x±2 = x± 2h, . . . (h > 0). Let us denote these values by
f0, f±1, f±2, etc., respectively. We approximate the derivatives of the function at the
point x. These derivatives will be denoted by f ′0, f

′′
0 , etc.

Def. 66. Let us denote an arbitrary derivative of the sufficiently smooth function f
at the point x0 by Df . An approximation of this value is denoted by ∆f(h) (the
approximation depends on the distance of the nodes). We say that the
approximation ∆f(h) at the point x0 is of order p (at least) if there is a real
numbet K > 0 such that

|Df −∆f(h)| ≤ Khp.

(That is |Df −∆f(h)| = O(hp).)
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Forward difference
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Forward difference

Based on the definition of the differential quotient

f ′ ≈ f1 − f0

h
=: ∆f+.

Moreover, if f ∈ C2 then we have

∆f+ =
f1 − f0

h
=

(f0 + f ′0h+ f ′′(ξ)h2/2)− f0

h
= f ′0 + f ′′(ξ)h/2.

This shows that the order of the forward difference approximation is 1, that is halving
the step-size h the error will be halved.
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Backward difference
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Backward difference

Based on the definition of the differential quotient

f ′ ≈ f0 − f−1

h
=: ∆f−.

Moreover, if f ∈ C2 then we have

∆f− =
f0 − f−1

h
=
f0 − (f0 − f ′0h+ f ′′(ξ)h2/2)

h
= f ′0 − f ′′(ξ)h/2.

This shows that this approximation is of first order.
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Centered difference
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Centered difference

Let us investigate the arithmetic mean of the two previous approximations.

∆fc :=
∆f+ + ∆f−

2
=
f1 − f−1

2h
.

Let us apply Taylor expansion at the point x0. Let f ∈ C3.

∆fc =
f1 − f−1

2h

=
f0 + f ′0h+ f ′′0 h

2/2 + f ′′′(ξ1)h3/6

2h

−f0 − f ′0h+ f ′′0 h
2/2− f ′′′(ξ2)h3/6

2h
= f ′0 + f ′′′(ξ)

h2

6
.

Thus, this approximation has order 2.
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Approximation of the second derivative
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Approximation of the second derivative

The second derivative is the derivative of the first derivative.

∆2fc =
∆f+ −∆f−

h
=
f1 − 2f0 + f−1

h2
.

Let us apply Taylor expansion again at the point x0. Let f ∈ C4.

∆2fc =

=
f0 + f ′0h+ f ′′0 h

2/2 + f ′′′0 h
3/6 + f ′′′′(ξ1)h4/24

h2
− 2f0

h2

+
f0 − f ′0h+ f ′′0 h

2/2− f ′′′0 h
3/6 + f ′′′′(ξ2)h4/24

h2
= f ′′0 + f ′′′′(ξ)

h2

12
.

Thus, the approximation has order 2.
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Other approximations
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Other approximations

Rmk. A fourth order centered approximation of the first derivative

−f2 + 8f1 − 8f−1 + f−2

12h
.

Rmk. A second order forward and backward approximation of the first derivative

−3f0 + 4f1 − f2

2h
,

f−2 − 4f−1 + 3f0

2h
.

Rmk. The above formulas can be generalized easily to cases when the step-size is not
equidistant.
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Other approximations

Rmk.

I The derivative at x0 of the polynomial fitted to the points (x0, f0), (x1, f1) (at
most first degree) is the same as the forward difference. The derivative at x0 of
the polynomial fitted to the points (x−1, f−1), (x0, f0) (at most first degree) is
the same as the backward difference.

I The derivative at x0 of the polynomial fitted to the points
(x−1, f−1), (x0, f0), (x1, f1) (at most second degree) is the same as the centered
difference, moreover, its second derivate gives the centered difference
approximation of the second derivative.

I The derivative at x0 of the third degree spline function fitted to the points
(x− h, f−1), (x, f0), (x+ h, f1) is the same as the the centered difference
approximation of the first derivative.
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Richardson extrapolation
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Richardson extrapolation

Lewis Fry Richardson (1881-1953, British, physicist, metheorologist,
psichologist)

Let the two values of the forward difference approximations of a function f at the
point x0 be: ∆f+(h) and ∆f+(h/2).

∆f+(h) = f ′0 + f ′′(ξh)
h

2
,

∆f+(h/2) = f ′0 + f ′′(ξh/2)
h

4
.

If h is small then ξh/2 ≈ ξh. Thus the approximation 2∆f+(h/2)−∆f+(h) may give a
higher order approximation to the derivative. Indeed, the order of this approximation is
2.
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Numerical integration
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Motivation
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Necessity of numerical integration

Newton–Leibniz formula: ∫ b

a
f(x) dx = F (b)− F (a).

We cannot use this formula if

I we cannot give the antiderivative of the function in closed form (e.g. sinx/x,
sinx2, e−x

2
).

I the computation of the antiderivative is complicated and time consuming.

I we know the values of the function at certain points only (e.g. measurements).
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Requirements

Let us suppose that the function f is integrable on the interval [a, b], and that we
know the values of the function at the nodes

a ≤ x0 < x1 < . . . < xn ≤ b.

Let these function values denoted by f0, . . . , fn, respectively. Then we should give an
estimation to the integral by the help of the nodes and the function values.

Expectations:

I The approximation must be calculated easily,

I When we refine the nodes then the approximations must tend to the exact
integral value of the functions,

I For sufficiently smooth functions the convergence must be fast.
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Quadrature formulas
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Quadrature formula

Let us denote the exact definite integral of the integrable function f by I(f) and let
one of its approximations at the given nodes be

In(f) =

n∑
k=0

akfk.

Both the coefficients ak (the so-called weights) and the function values fk may depend
on the number and the location of the nodes. The above formula is called quadrature
formula.
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Quadrature formula

Def. 67. We say that a quadrature formula is closed if it uses the function values
both at a and b. If it does not use these values then the quadrature formula is
open.

Let h be the larges step size between two adjacent nodes.

Def. 68. We say that the convergence order of the quadrature formula In(f) is
r ≥ 1 (at least), if |I(f)− In(f)| = O(hr).

Def. 69. We say that the exactness order of the quadrature formula In(f) is r ≥ 1,
if I(p) = In(p) for all polynomials from Pr−1 but there exists a polynomial p with
degree r (p ∈ Pr) such that I(p) 6= In(p).
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Newton–Cotes formulas
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Newton–Cotes formulas

Def. 70. We call a quadrature formula interpolation quadrature formula, if it
approximates the integral with the integral of the interpolation polynomial fitted
to the given function values.

Def. 71. If in an interpolation quadrature formula the nodes are equidistant (h),
then the formula is called to be a Newton–Cotes-formula.

Roger Cotes (1682-1716, English)
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Newton–Cotes formulas

The function f can be written in the form

f(x) = Ln(x) + rn(x),

where Ln is the interpolation polynomial fitted to the function f on the given nodes,
and rn is the error term. Then the exact integral can be approximated as follows

I(f) =

∫ b

a
f(x) dx =

∫ b

a
Ln(x) dx+

∫ b

a
rn(x) dx

=

∫ b

a

(
n∑
k=0

fklk(x)

)
dx+

∫ b

a
rn(x) dx

=

n∑
k=0

fk


ak︷ ︸︸ ︷∫ b

a
lk(x) dx


︸ ︷︷ ︸

In(f)

+

∫ b

a
rn(x) dx.
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Newton–Cotes formulas

Here the weights depend on the interval of the integration. We can make them
interval independent by changing the variable in the integral: let x = a+ (b− a)t
(t ∈ [0, 1]), thus dx/dt = (b− a). In this way we have

ak =

∫ b

a
lk(x) dx =

∫ 1

0
lk(a+ (b− a)t)(b− a) dt

= (b− a)

∫ 1

0
lk(a+ (b− a)t) dt,

where the last factor depends solely on the number of the interpolation nodes and their
relative location. These values can be calculated and tabulated in advance: these are
the so-called Newton–Cotes coefficients.

266 / 390



Closed Newton–Cotes formulas

With the setting

a = x0 < x1 < . . . < xn = b, xk+1 − xk = h = (b− a)/n

we obtain the weights
ak = (b− a)Nn,k

c ,

where the coefficients Nn,k
c are called closed Newton–Cotes coefficients.

Nn,k
c k = 0 k = 1 k = 2 k = 3

n = 1 1/2 1/2 ← trapezoidal rule
n = 2 1/6 4/6 1/6 ← Simpson’s rule
n = 3 1/8 3/8 3/8 1/8

Example. Applying the Simpson’s rule to∫ 3

1
x2 − 2x+ 2 dx = 2(1 · 1/6 + 2 · 4/6 + 5 · 1/6) = 14/3

we obtain the exact integral value.
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Open Newton–Cotes formulas

With the setting

a = x−1 < x0 < . . . < xn < xn+1 = b, xk+1 − xk = h = (b− a)/(n+ 2)

we obtain the weights
ak = (b− a)Nn,k

o ,

where the coefficients Nn,k
o are called open Newton–Cotes coefficients.

Nn,k
o k = 0 k = 1 k = 2

n = 0 1 ← midpoint rule
n = 1 1/2 1/2
n = 2 2/3 −1/3 2/3
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Newton–Cotes formulas

Thm. 72. A quadrature rule based on n+ 1 nodes is exact for Pn iff it is an
interpolation quadrature formula.

Proof. ⇐ Trivial.
⇒ It must be exact for all characteristic Lagrange polynomials lk(x). That is∫ b

a
lk(x) dx =

n∑
j=0

ajlk(xj) = ak.
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Newton–Cotes formulas

Let Nn,k denote the closed or the open Newton–Cotes coefficients.

Thm. 73.
n∑
k=0

Nn,k = 1, Nn,k = Nn,n−k.

Proof. In view of the previous theorem we have∫ b

a
1 dx = b− a =

n∑
k=0

(Nn,k(b− a)1) = (b− a)

n∑
k=0

Nn,k.

This proves the first statement. The second one follows from the symmetry
lk(a+ x) = ln−k(b− x).

Rmk. If n is large then it is not practical to use the Newton–Cotes formulas. The
Newton–Cotes coefficients Nn,k may be negative that may cause cancellation. We
generally use composite formulas.
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Newton–Cotes formulas

Rmk. The Newton–Cotes formulas based on n+ 1 nodes are exact for Pn. If n is even,
then they are exact also for Pn+1.

Namely, let pn+1 be a polynomial from Pn+1. Let us rewrite it to a polynomial of the
term (x− (a+ b)/2).

pn+1(x) = αn+1

(
x− a+ b

2

)n+1

+ αn

(
x− a+ b

2

)n
+ . . .+ α0︸ ︷︷ ︸

The formula is exact for this.

,

moreover, ∫ b

a
αn+1

(
x− a+ b

2

)n+1

︸ ︷︷ ︸
=:f(x)

dx = (b− a)

n∑
k=0

Nn,k︸︷︷︸
Nn,n−k

f(xk)︸ ︷︷ ︸
−f(xn−k)

= 0.

Thus the formula is exact for this polynomial.
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Composite formulas
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Composite trapezoidal rule

Let the nodes be equidistant with distance h. The so-called composite trapezoidal rule
approximates the integral as follows:

Itrap(f) =
h

2
f0 + h

n−1∑
k=1

fk +
h

2
fn = h

(
f0

2
+

n−1∑
k=1

fk +
fn
2

)
.
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Composite trapezoidal rule

I Closed quadrature formula. The application of the formula is easy.

I sn ≤ Itrap(f) ≤ Sn, that is, if the function is Riemann integrable, then the value
of the formula tends to the exact integral value as the partition is refined.

I Order of exactness: 2. It is exact only on first degree polynomials. Order of the
convergence is 2.

Example. ∫ 1

0
sinx/x dx ≈ 0.9460830704, n = 1/h.

n In(f) |I(f)− In(f)|
1 0.920735 0.25× 10−1

10 0.945832 0.25× 10−3

100 0.946080 0.25× 10−5

1000 0.9460830704 0.27× 10−7
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Composite trapezoidal rule

Thm. 74. For f ∈ C2[a, b] functions, the error of the composite trapezoidal rule is

I(f)− Itrap(f) = −(b− a)h2

12
f (2)(η),

where η ∈ (a, b).

Rmk.

|I(f)− Itrap(f)| ≤ (b− a)h2

12
M2.
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Composite midpoint rule

Imid(f) = h(f1/2 + . . .+ fn−1/2).

Open quadrature formula. Order: 2 (convergence and exactness).

Thm. 75. The error of the composite midpoint rule for f ∈ C2[a, b] functions is

I(f)− Imid(f) =
(b− a)h2

24
f (2)(η),

where η ∈ (a, b).
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Composite Simpson’s rule

ISimp(f) =
h

6
(f0 + 4f1/2 + 2f1 + 4f3/2 + 2f2 + . . .+ 4fn−1/2 + fn).

Closed quadrature formula. Order: 4 (convergence and exactness).
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Composite Simpson’s rule

Thm. 76. The error of the composite Simpson’s rule for functions f ∈ C4[a, b] is

I(f)− ISimp(f) = −(b− a)h4

2880
f (4)(η),

where η ∈ (a, b).

Rmk. In the case of a given partition:

ISimp(f) =
Itrap(f) + 2Imid(f)

3
.

Rmk. All the above quadrature formulas tend to the exact integral for Riemann
integrable functions as h→ 0.
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Gaussian quadrature
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Gaussian quadrature

We have used equidistant nodes so far. We have seen, however, that these set of
nodes are not efficient in interpolation problems.
We are looking for a better solution.

Is(f) :=

∫ b

a
s(x)f(x) dx ≈

n∑
k=0

akfk =: In,s(f),

where a ≤ x0 < x1 < . . . < xn ≤ b are arbitrary nodes and s is a positive weight
function.

If the quadrature formula is an interpolation quadrature formula, then we have

ak =

∫ b

a
s(x)lk(x) dx

and the quadrature formula is exact for Pn.

How to choose the nodes to make the order of the exactness as large as
possible?
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Gaussian quadrature

Thm. 77. The interpolation quadrature formula

In,s(f) =

n∑
k=0

akfk

is exact for Pn+m if and only if∫ b

a
wn+1(x)s(x)p(x) dx = 0

for all p ∈ Pm−1.

Rmk. The formula cannot be exact for P2n+2. To see this, let us take p = wn+1. From
the equality ∫ b

a
s(x)w2

n+1(x) dx = 0

we have wn+1 ≡ 0, which shows a contradiction.
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Gaussian quadrature

Def. 78. Let g1, g2 ∈ C[a, b]. We call these functions orthogonal on the interval
[a, b] with respect to the positive weight function s, if∫ b

a
s(x)g1(x)g2(x) dx = 0.

Thm. 79. Let us suppose that the polynomials p0, p1, . . . (the subscript denotes the
degree of the polynomial) are pairwise orthogonal on [a, b] with respect to the
weight function s. Then all the zeros of these polynomials are real, single and lie in
the interval [a, b].

Construction of the Gaussian quadrature formulas: We orthogonalize the
polynomials 1, x, . . . with respect to the weight function: p0, p1, . . .. We define the
zeros of these polynomials (x0, . . . , xn) to be the nodes of the quadrature formula. We

calculate the quadrature weights as ak =
∫ b
a s(x)lk(x) dx.

Then the form of the quadrature formula is

In,s(f) =

n∑
k=0

akf(xk).
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Gaussian quadrature

Legendre polynomials (s(x) = 1, [−1, 1]): p0 = 1, p1 = x, p2 = x2 − 1/3, etc.

Chebishev polynomials (s(x) = 1/
√

1− x2, [−1, 1]): p0 = 1, p1 = x, p2 = x2 − 1/2,
p3 = x3 − 3x/4 etc.

Example. Let us construct the three-point Gauss–Chebyshev quadrature formula!
The zeros of p3 are 0 and ±

√
3/2. These are the nodes. The weights

a0 =

∫ 1

−1

x(x−
√

3/2)

−
√

3/2(−
√

3/2−
√

3/2)

1√
1− x2

dx = π/3,

similarly a1 = a2 = π/3. Thus the formula is:∫ 1

−1

f(x)√
1− x2

dx ≈ π

3
(f(−

√
3/2) + f(0) + f(

√
3/2)).
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Gaussian quadrature

Some nodes and weights of Gaussian quadrature.

Gauss–Legendre Gauss–Chebyshev

s(x) = 1 s(x) = 1/
√

1− x2

Nr. of points Nodes Weights Nodes Weights

1 0 2 0 π

2 −1√
3
, 1√

3
1,1 −1√

2
, 1√

2
π
2 ,

π
2

3 −
√

3
5 , 0,

√
3
5

5
9 ,

8
9 ,

5
9

−
√

3
2 , 0,

√
3

2
π
3 ,

π
3 ,

π
3
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Numerical solution of initial value

problems
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Introduction
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Examples

I Motion of a pendulum (φ(0) = α)

φ′(t) = ±
√

2g

l

√
cosφ(t)− cosα

I (Alfred James) Lotka (1925, USA) - (Vito) Volterra (1926, Italian) predator-pray
model (u(0), v(0) are given)

u′(t) = u(t)(2− v(t)),

v′(t) = v(t)(u(t)− 1).

I Deflection of a rod (y(0) = y(L) = 0)

EIy′′(x) + P cos(y(x)) = 0.

The first two examples are so-called initial value problems, while the third one is a
so-called boundary value problem.
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Initial value problems

y′ = f(x,y), y(x0) given

where y : [a, b]→ Rn is the unknown function, f : [a, b]× Rn → Rn, moreover
x0 ∈ [a, b].

Other forms:
y′(x) = f(x,y(x)),

or componentwise
y′1(x) = f1(x, y1, . . . , yn),

...

y′n(x) = fn(x, y1, . . . , yn),

Order of the equation: the highest order of the derivative of the unknown function that
appear in the equation.
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Initial value problems

Example. Higher order equations with one unknown can be rewritten to a system of
ordinary differential equations. In case of

y′′ + 3y′y + xy = 0, y(x0), y′(x0) given

we can rewrite the equation as

y′1(x) = y2, y1(x0) given

y′2(x) = −xy1 − 3y2y1, y2(x0) given.

Solution: A function y that is differentiable sufficiently many times, fulfils the initial
condition and if we substitute it back into the equation then we arrive at an identity.
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Existence and uniqueness

Rudolf Otto Sigismund Lipschitz (1832 - 1903, German)

Def. 80. We say that the function f : [a, b]×Rn → Rn is Lipschitz continuous in its
second argument, if ∃L ≥ 0 such that for all x ∈ [a, b] and z1, z2 ∈ Rn we have

‖f(x, z1)− f(x, z2)‖ ≤ L‖z1 − z2‖.

Thm. 81. If the right hand side function f of the initial value problem

y′ = f(x,y), y(a) given

is continuous in its first argument on [a, b] and Lipschitz continuous in its second
argument then the problem has a unique solution, which is continuously
differentiable.
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Explicit Euler method
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Explicit Euler method (EE)

The method was published by Euler in a three-volume book between 1768 and
1770.

y′(x) = f(x, y(x)), y(x0) given.
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Explicit Euler method (EE)

We define a mesh on the interval [x0, xmax] and we approximate the value of the
solution function only at these points.

The mesh is xk = x0 + hk (k = 0, 1, . . . , Nh), where h is an arbitrary positive step
size. Nh is the maximum positive integer that satisfies hNh ≤ xmax. Let us denote the
approximations in the mesh points by yk.

The formula of the Explicit Euler method is:

yk+1 = yk + hf(xk,yk), y0 is known from y(x0).

293 / 390



General notions of the numerical methods of ODEs

Def. 82. The iteration formula that prescribes how to calculate the approximation
values at the mesh points is called numerical scheme (or method).

The general numerical schemes we will deal with have the form

yk+1 = yk + hΦ(h, xk,yk+1,yk, . . . ,yk+1−s),

where Φ is the so-called increment function (EE-case: Φ = f(xk,yk)), and s is a
positive integer. Notice that the other mesh points can be expressed with xk and h.
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General notions of the numerical methods of ODEs

Def. 83. A numerical scheme (or method) is explicit, if Φ is independent of yk+1,
that is we do not need to solve equations to get yk+1. Otherwise the scheme is
implicit.

Def. 84. The number s is called the number of steps of the scheme. The scheme is
called one-step scheme (method) if s = 1 (only the data at the kth point are used
to the approximation at the (k + 1)th point). The scheme is a multistep scheme if
s > 1.

Example. The EE (scheme) method is a one-step explicit (scheme) method.

In the sequel we will investigate one-step methods only. The multistep methods are
considered in a separate section.
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Implicit Euler and Crank–Nicolson methods
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Implicit Euler method (IE)

The scheme is
yk = yk+1 − hf(xk+1,yk+1),

where we have to solve a non-linear system of equations in each iteration step. This
can be solved e.g. with fixed point iteration starting from the estimate in the previous
point yk.

Rmk. The implicit Euler method is a one-step implicit method.
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Crank–Nicolson method (CN, trapezoidal)

John Crank (1916 - 2006), Phyllis Nicolson (1917 - 1968), English.

The scheme

yk+1 = yk +
h

2
(f(xk,yk) + f(xk+1,yk+1)).

This is also a one-step implicit scheme.
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Other derivations

Numerical integration:

y′(x) = f(x, y)⇒
∫ x0+h

x0

y′(x) dx =

∫ x0+h

x0

f(x, y(x)) dx

Thus

y(x0 + h)− y(x0) =

∫ x0+h

x0

f(x, y(x)) dx

≈


f(x0, y0)h, (EE)

f(x0 + h, y(x0 + h))h, (IE)

(f(x0, y0) + f(x0 + h, y(x0 + h)))h/2 (CN).
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Other derivations

Numerical differentiation:

We change the derivative with the forward difference approximation.

y(x0 + h)− y(x0)

h
≈ f(x0, y(x0)),

After rearrangement we arrive at the scheme of the EE method.

Taylor’s method

y(x0 + h) = y(x0) + y′(x0)︸ ︷︷ ︸
f(x0,y(x0))

h+
y′′(x0)h2

2
+
y′′′(x0)h3

6
+ etc.

When we stop after the first order term, then we get the EE scheme. If we can
compute the derivatives of function f(x, y) with respect to x, then we can produce the
Taylor’s series of the solution to arbitrary order.
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The θ-method

Let θ ∈ [0, 1] be an arbitrary parameter and let us consider the numerical integration
formula

y(x0 + h)− y(x0) =

∫ x0+h

x0

f(x, y(x)) dx

≈ h(θf(x0 + h, y(x0 + h)) + (1− θ)f(x0, y(x0))).

Special cases:

I The θ = 0 case gives the EE scheme,

I the θ = 1 case gives the IE scheme,

I and the θ = 1/2 case gives the CN scheme.
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Consistency, stability, convergence
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A numerical experiment (EE method)

Example.

y′(x) =
y(x) + x

y(x)− x
, y(0) = 1.

Exact solution
y(x) = x+

√
1 + 2x2.

h = 1/k y1 − y(x1) yk − y(1)

1/2 −0.2247 −0.2321
1/4 −0.0607 −0.1065
1/8 −0.0155 −0.0510

1/16 −0.0039 −0.0249

The error is second order at the first mesh point and first order at the point x = 1.
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Convergence

Let ek denote the difference yk − y(xk) (k = 0, . . . , Nh).

Def. 85. A numerical scheme (method) is said to be convergent, if

max
k=1,...,Nh

‖ek‖ = O(hr)

(r ≥ 1), and we say that the order of the convergence is (at least) r.

Def. 86. Local truncation error (LTE): the remainder when we pretend that the
exact solution satisfies the scheme is written in the form hτ k+1. τ k+1 is called the
local truncation error at the point xk+1.

Example. For one-step schemes we have

y(xk+1) = y(xk) + hΦ(h, xk,y(xk),y(xk+1)) + hτ k+1.
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Consistency

Example. Computation of the local truncation error for the EE method (y ∈ C2):

τ k+1 =
y(xk+1)− y(xk)

h
− f(xk,y(xk))

=
y(xk) + y′(xk)h+ y′′(ξk)h

2/2− y(xk)

h
− f(xk,y(xk))

= y′′(ξk)h/2.

Thus, all local truncation errors are bounden by M2h/2.

Def. 87. If all the truncation errors are bounded by Chr (C ≥ 0 constant and
r ≥ 1), then the numerical scheme is called consistent with the order of consistency
r.

Example. The EE method (y ∈ C2) is consistent with consistency order 1.
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Stability

Def. 88. A numerical scheme is called to be (zero-)stable on the interval [x0, xmax]
if there are numbers K > 0 (independent of h) and h0 > 0 such that

max
k=1,...,Nh

‖yk − zk‖ ≤ K‖y0 − z0‖

if 0 < h < h0. (zk is a vector sequence starting from z0 and defined by the
numerical scheme.)
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Convergence

Thm. 89. (The equivalence theorem.) Let us suppose that the order of the
consistency of a numerical scheme is r ≥ 1. Then the necessary and sufficient
condition of the convergence is the stability. The order of the convergence is r.

Thm. 90. Let us consider the initial value problem

y′ = f(x,y), y(x0) given

with a solution y ∈ C2. Then the explicit Euler method is convergent and the
convergence order is 1, moreover we have

‖ek‖ ≤ e(xmax−x0)Lh(xmax − x0)M2/2.
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Convergence

Proof. We prove only the stability, which gives the convergence due to the equivalence
theorem.
We start from two arbitrary vector sequences that are generated by the explicit Euler
scheme

yk+1 = yk + hf(xk,yk),

zk+1 = zk + hf(xk, zk).

We subtract the two equalities and use the Lipschitz continuity of the function f .

‖yk+1 − zk+1‖ = ‖yk − zk‖+ h‖f(xk,yk)− f(xk, zk)‖ ≤

≤ ‖yk − zk‖+ hL‖yk − zk‖ ≤ (1 + hL)‖yk − zk‖.

Thus we have

‖yk − zk‖ ≤ (1 + hL)k‖y0 − z0‖ ≤ ekhL‖y0 − z0‖ = e(xmax−x0)L‖y0 − z0‖.

This estimation shows the stability of the scheme.
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Convergence of the θ method

Thm. 91. Let us consider the initial value problem

y′ = f(x,y), y(x0) given

(y ∈ C3). Then the θ method is convergent and

‖ek‖ ≤
h

4

(∣∣∣∣12 − θ
∣∣∣∣M2 +

h

3
M3

)(
e

(b−a)L
1−θLh − 1

)
,

where M3 = maxx∈[a,b] ‖y′′′(x)‖.

Rmk. The Crank–Nicolson method has second order, while the other methods are only
first order convergent.
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Runge–Kutta methods
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Runge–Kutta methods

Carl David Tolmé Runge (1856 - 1927, German),
Martin Wilhelm Kutta (1867 - 1944, German)

Let us assume that f is sufficiently smooth. Then the solution y will be also
sufficiently smooth. Let us expand y into Taylor series at the point x0:

y(x0 + h) = y(x0) + h y′(x0)︸ ︷︷ ︸
=f(x0,y(x0))

+
h2

2
y′′(x0)︸ ︷︷ ︸

=?

+ . . . .
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Runge–Kutta methods

y′′(x0) can be calculated, but we need the derivatives of f .

y′′(x0) = f ′x(x0,y(x0)) + f ′y(x0,y(x0))f(x0, y(x0)).

Thus
y(x0 + h) = y(x0)

+h

(
f(x0,y(x0)) +

h

2

(
f ′x(x0,y(x0)) + f ′y(x0,y(x0))f(x0,y(x0))

))
+ . . .

Let us search for a sufficiently accurate approximation of the highlighted factor in the
form

af(x0,y(x0)) + b f(x0 + αh,y(x0) + βhf(x0,y(x0)))︸ ︷︷ ︸
f(x0,y(x0))+f ′x(x0,y(x0))αh+f ′y(x0,y(x0))βhf(x0,y(x0))+O(h2)

,

where a, b, α, β are suitable real constants.
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Runge–Kutta methods

We obtain that

a+ b = 1, αb = βb =
1

2
,

and writing all parameters as functions of b we obtain

a = 1− b, α = β =
1

2b
.

General form:
yk+1

= yk + h((1− b)f(xk,yk) + bf(xk + h/(2b),yk + f(xk,yk)h/(2b))).

Rmk. The consistency order of these methods (b 6= 0) is 2. It can be proven that they
are also stable. Thus these methods are convergent and the order of the convergence
is 2.
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Runge–Kutta methods

Rmk. Special cases:

Modified Euler method (RK2, b = 1):

yk+1 = yk + hf(xk + h/2,yk + f(xk,yk)h/2).

Simplified Runge–Kutta or Heun method (b = 1/2):

yk+1 = yk + h (f(xk,yk)/2 + f(xk + h,yk + f(xk,yk)h)/2) .
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Runge–Kutta methods - general form

yk+1 = yk + hΦ(xk,yk, h),

where

Φ(x,y, h) =

R∑
r=1

crkr

and
k1 = f(x,y),

kr = f(x+ har,y + h

r−1∑
s=1

brsks), r = 2, . . . , R,

ar =

r−1∑
s=1

brs, r = 2, . . . , R.

R is called the number of the stages of the method.
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Runge–Kutta methods - Butcher’s tableau

The coefficients can be conveniently written in a tabular form (so-called Butcher’s
tableau).

John C. Butcher (1933 -, New-Zealand)
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Runge–Kutta methods - Butcher’s tableau

0
a2 b21

a3 b31 b32
...
aR bR1 bR2 bR,R−1

c1 c2 cR−1 cR

a B

cT

The consistency order of the methods (the conditions are understood cumulatively):

cons. order condition

1 a = Be cTe = 1

2 cTa = 1/2

3 cT (a.2) = 1/3 cTBa = 1/6

4 cT (a.3) = 1/4 cTdiag(a)Ba = 1/8
cTB(a.2) = 1/12 cTB2a = 1/24
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Runge–Kutta methods - RK2, Heun, RK4 methods

Example. Modified Euler (RK2) and Heun methods (two-stage methods):

0
1/2 1/2

0 1

0
1 1

1/2 1/2

Rmk. The achievable highest order with fixed number of stages:

number of stages (m) 1, 2, 3, 4 5, 6, 7 8, 9, 10

max. order m m− 1 m− 2
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Runge–Kutta methods - RK2, Heun, RK4 methods

Example. Fourth order (four-stage) Runge–Kutta method (RK4):

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

yk+1 = yk +
h

6
(k1 + 2k2 + 2k3 + k4),

k1 = f(xk,yk)

k2 = f(xk + h/2,yk + k1h/2)

k3 = f(xk + h/2,yk + k2h/2)

k4 = f(xk + h,yk + k3h)
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Absolute stability
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The test problem

Let us applied the studied methods to the initial value problem

y′ = λy, y(0) = 1,

where λ < 0 is an arbitrary negative real number.

The solution is y(x) = eλx, which converges to 0 as x→∞.

Def. 92. If a numerical method with a fixed step size h is applied to the test
problem and the numerical solution |yk| tends to 0 as k →∞ then the method is
called absolute stable.

Naturally, the absolute stability depends on both λ and h.

Def. 93. The set A = {z = hλ ∈ R | the method is absolute stable with z } is
called the domain of absolute stability. If R− ⊂ A, then the method is called to be
A-stable.
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Absolute stability of the EE and IE methods

EE method:
yk = (1 + hλ)k,

which tends to zero only if |1 + hλ| < 1, that is if z = hλ lies in a circle with radius 1
and with center at −1.

The method is absolute stable iff h < −2/λ.

IE method:

yk =
1

(1− hλ)k
,

which tends to zero only if z = hλ lies outside the circle with radius 1 and with center
at 1.

The method is A-stable.

Rmk. None of the (explicit) Runge–Kutta methods are A-stable.
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Solution of stiff equations
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Solution of stiff equations

The high stability of the equations results in instability in the numerical solution.

Equations for which implicit methods work well and explicit methods behave badly.

Equations for which the choice of h is restricted not by the accuracy but by the
absolute stability.

Example. The efficient solution of the van der Pol equation (µ = 100000):

y′1 = y2

y′2 = µ(1− y2
1)y2 − y1;

Example. The solution of the equation y′ = −15y + 1, y(0) = 0.
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Predictor-corrector methods

Multistep methods
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Predictor-corrector methods
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A simple example

CN method:

yk+1 = yk +
h

2
(f(xk,yk) + f(xk+1,yk+1)).

This method is an implicit one. If h ≤ 2/L (L is the Lipschitz constant), then the
equation has a unique solution for yk+1. yk+1 can be computed by fixed point
iteration:

y
(s+1)
k+1 = yk +

h

2
(f(xk,yk) + f(xk+1,y

(s)
k+1)).

Problems:

I When to stop the iteration?

I f(x,y) must be computed many times.

I What is a good choice for y
(0)
k+1?
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A simple example

Solution: Let us apply an explicit method to obtain a good guess for y
(0)
k+1.

For example, we can use the explicit Euler method. That is we set

y
(0)
k+1 = yk + hf(xk,yk).

Iterating only once we obtain the method

yk+1 = yk +
h

2
(f(xk,yk) + f(xk+1,yk + hf(xk,yk)),

which is an explicit method.

Advantage of this technique: What is the order of this method? The EE method is
first order, the CN method is second order, but the combined method above is second
order. This is the Heun method (b = 1/2), which is second order indeed.
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The idea of predictor-corrector methods

The application of an explicit and an implicit method after each other.

I Predictor: An explicit method that predicts a good starting value for the
iteration in the case of an implicit method.

I Corrector: The applied implicit method, with which we correct the value of yk+1.
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Multistep methods
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General form of s-step methods

asyk+1 + as−1yk + . . .+ a0yk−(s−1)

= h(bs fk+1︸︷︷︸
f(xk+1,yk+1)

+bs−1 fk︸︷︷︸
f(xk,yk)

+ . . .+ b0 fk−(s−1))︸ ︷︷ ︸
f(xk−(s−1),yk−(s−1))

I as 6= 0, because it is used to calculate yk+1.

I If bs = 0, then the method is explicit, otherwise it is implicit.

I To start the method we need the values y0, . . . , ys−1. These can be calculated
with a sufficiently accurate one-step method (e.g. with some RK methods).
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Adams methods

If as = 1, as−1 = −1 and ak = 0 (k = s− 2, . . . , 0), then the method is called Adams
method. The explicit Adams methods are called Adams-Bashforth methods (John
Couch Adams (1819 - 1892, English), astronomer, mathematician; Francis Bashforth
(1819 - 1912, English), mathematician), and the implicit ones Adams-Moulton
methods (Forest Ray Moulton (1872 - 1952, USA), astronomer).
Construction: ∫ xk+1

xk

y′(x) dx =

∫ xk+1

xk

f(x, y(x)) dx

yk+1 − yk =

∫ xk+1

xk

k(AB), k+1(AM)∑
j=k−s+1

f(xj , yj)︸ ︷︷ ︸
fj

lj(x) dx,

=

k(AB), k+1(AM)∑
j=k−s+1

fj

∫ xk+1

xk

lj(x) dx

where lj (j = k − s+ 1, . . . , k(AB), k + 1(AM)) is the jth characteristic Lagrange
polynomial to the points xk−s+1, . . . , xk(AB), xk+1(AM).
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Adams methods

The maximal order Adams–Bashforth formulas:

Steps Formula Order

1 yk+1 = yk + hfk (EE) 1

2 yk+1 = yk + h
2

(3fk − fk−1) 2

3 yk+1 = yk + h
12

(23fk − 16fk−1 + 5fk−2) 3

4 yk+1 = yk + h
24

(55fk − 59fk−1 + 37fk−2 − 9fk−3) 4

5 yk+1 = yk + h
720

(1901fk − 2774fk−1 + 2616fk−2 − 1274fk−3 + 251fk−4) 5

The maximal order Adams–Moulton formulas:

Steps Formula Order

1 yk+1 = yk + hfk+1 (IE) 1

1 yk+1 = yk + h
2

(fk+1 + fk) (CN) 2

2 yk+1 = yk + h
12

(5fk+1 + 8fk − fk−1) 3

3 yk+1 = yk + h
24

(9fk+1 + 19fk − 5fk−1 + fk−2) 4

4 yk+1 = yk + h
720

(251fk+1 + 646fk − 264fk−1 + 106fk−2 − 19fk−3) 5
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Backward differentiation formulas (BDF)

If bs = 1 and bk = 0 (k = s− 1, . . . , 0), then the method is called backward
differentiation formula - BDF.

Construction:

We start with the differential equation at the point xk+1

y′(xk+1) = f(xk+1, y(xk+1)).

The right hand side is approximated by f(xk+1, yk+1) = fk+1, and on the left hand
side we apply a backward difference formula.

The maximal order BDF methods:

Steps Formula Order

1 (IE) yk+1 − yk = hfk+1 1

2 3
2
yk+1 − 2yk + 1

2
yk−1 = hfk+1 2

3 11
6
yk+1 − 3yk + 3

2
yk−1 − 1

3
yk−2 = hfk+1 3

4 25
12
yk+1 − 4yk + 3yk−1 − 4

3
yk−2 + 1

4
yk−3 = hfk+1 4

5 137
60
yk+1 − 5yk + 5yk−1 − 10

3
yk−2 + 5

4
yk−3 − 1

5
yk−4 = hfk+1 5
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Consistency

We calculate h·LTE (let we develop the Taylor expansion at z = xk−s+1):

h · LTE =asy(xk+1) + . . .+ a0y(xk−s+1)

− h(bsf(xk+1, y(xk+1)) + . . .+ b0f(xk−s+1, y(xk−s+1))) =

=

s∑
i=0

aiy(z + ih)− hbi f(z + ih, y(z + ih))︸ ︷︷ ︸
y′(z+ih)


=

s∑
i=0

ai(y(z) + y′(z)ih+ y′′(z)(ih)2/2 + . . .)

− h
s∑
i=0

bi(y
′(z) + y′′(z)ih+ y′′′(z)(ih)2/2 + . . .)

=d0y(z) + d1y
′(z)h+ d2y

′′(z)h2 + . . . ,
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Consistency

where

d0 =

s∑
i=0

ai

d1 =

s∑
i=0

(iai − bi)

...

dj =

s∑
i=0

(
ijai
j!
− ij−1bi

(j − 1)!

)
...

Thus we have

LTE = d0y(z)
1

h
+ d1y

′(z) + d2y
′′(z)h+ d3y

′′′(z)h2 + . . . .
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Consistency

From the form of the local truncation error it follows the following result directly.

Thm. 94. The multistep method is consistent iff d0 = d1 = 0. If the solution y is in
Cm+1 and

d0 = . . . = dm = 0 (m ≥ 1)

and
dm+1 6= 0,

then the local truncation error is O(hm), thus the consistency order of the method
is m.

Example. The AB5 and AM4 methods have consistency order 5.

Example. The method yk+1 − yk−1 = h
3 (fk+1 + 4fk + fk−1) has consistency order 4.

a2 = 1, a1 = 0, a0 = −1, b2 = 1/3, b1 = 4/3, b0 = 1/3. Thus d0 = . . . = d4 = 0 és
d5 = −1/90.
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Consistency

What is the maximal achievable consistency order?

The method has 2s+ 1 free coefficients (because the coefficients are unique only up to
a nonzero constant multiplier). There is some hope that we can choose the coefficients
in such a way that d0 = . . . = d2s = 0 (2s+ 1 equations and 2s+ 1 unknowns).

Theorem
(Dahlquist (1956)) The system of equations d0 = . . . = d2s = 0 has always a solution
up to a nonzero constant multiplier. Thus, with an s-step method, we can achieve a
consistency order as high as 2s. (For explicit methods, the achievable highest order is
2s− 1 (bs must be zero). For AB methods: s, and for AM methods: s+ 1.)

Germund Dahlquist, 1925-2005, Swedish
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Stability

Def. 96. An s-step method is called to be (zero)stable if there are two constants
K > 0 and h0 > 0 independent of the step size such that for 0 < h < h0 we have

|yk − ŷk| ≤ K max{|y0 − ŷ0|, . . . , |ys−1 − ŷs−1|}, k = s, . . . , Nh,

that is starting the scheme from two different sets of initial values, the difference of
the solutions remains bounded on finite intervals. (ŷk is the sequence produced
with the hatted values.)

Thm. 97. An s-step method is stable iff all zeros of the so-called first characteristic
polynomial ζ(z) = asz

s + . . .+ a1z + a0 lie in the closed complex unit circle
centered at the origin and the zeros on the boundary are single.
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Convergence

Thm. 98. (Equivalence theorem) Let us suppose that the solution of the initial
value problem is in Cr+1, moreover, let us suppose that the multistep method has
consistency order r. Then the stability is a necessary and sufficient condition of
the convergence. The order of the convergence is r.

Example.
EE, IE: ζ(z) = z − 1, thus the methods are stable, they are also consistent (order is 1),
and these imply that they are convergent with order 1.

Theorem
The Adams methods are convergent and their convergence order equals the order of
their consistency.

Proof: ζ(z) = zs − zs−1 = zs−1(z − 1). Thus, the method is always stable. The other
part of the theorem follows from the equivalence theorem.
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Stability

Theorem
There are valid the following so-called Dahlquist’s (first and second) barriers (indicated
by blue and extended by some previously discussed results).

s: number of steps of the method Impicit Explicit

The greatest possible consistency order 2s 2s− 1
The greatest possible consistency order of a stable method s+ 1 (s odd) s

s+ 2 (s even)
The greatest possible order of an A-stable method 2 -
The greatest possible order of a convergent Adams method s+ 1 (AM) s (AB)
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A not stable method

yn+1 + 4yn − 5yn−1 = h(4fn + 2fn−1)

This 2-step method is explicit and third order, thus it cannot be stable. This can be
verified on the test equation y′ = 0, y(0) = 0.

Then for y0 = 0 and y1 = εh we have

yn = (1− (−5)n)εh/6.

The numerical solution at x = 1 is (n = 1/h)

(1− (−5)1/h)εh/6.

With the choice y0 = 0 and y1 = 0 we obtain zero. This shows that the method
cannot be stable.
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Solution of boundary value problems
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Solution of boundary value problems

Initial value problems: The values of all the unknown functions are known at the
same fixed point.

Boundary value problems: The values of the unknown functions are known at more
different points (generally at the two ends of an interval).

Example. The equation of the deflection of a rod:

EIy′′(x) + P cos(y(x)) = 0, y(0) = 0, y(L) = 0.

⇓

y′1 = y2, y1(0) = y1(L) = 0,

y′2 = − P

EI
cos(y1).
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Boundary value problems

Let us consider the two-point boundary value problems in the form

y′′ = f(x, y, y′), y(a) = A, y(b) = B,

where a < b and x ∈ [a, b].

Theorem
Assume that f is continuous, the derivative with respect to the second argument is
continuous and positive, the derivative with respect to the third argument is
continuous and bounded. Then the boundary value problem has a unique solution.

Example. The problem y′′ = −y, y(0) = 3, y(π) = 7 has no solution.
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Shooting method
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Shooting (garden hose) method

Let us rewrite the problem to an initial values problem

y′1 = y2, y1(a) = y(a) = A,

y′2 = f(x, y1, y2), y2(a) = y′(a) =: D,

where we have replaced the unknown value y2(a) = y′(a) by a fixed real number D.

Let us denote the solution of the above problem by y(x;D). If y(b;D) = B, then
y(x;D) solves the original boundary value problem. Otherwise, we choose another
value D. This can be done in a systematic way.
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Shooting method

We have to solve the nonlinear equation

y(b;D)−B = 0

for the parameter D.

We can use the previously studied methods to find the appropriate D.

I Bisection method,

I Newton’s method.
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Finite difference method
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Finite difference method (matrix method)

y′′ = f(x, y, y′), y(a) = A, y(b) = B

Let us define an equidistant mesh on [a, b]. Let the length of the subintervals be
h = (b− a)/(n+ 1), thus xi = a+ ih (i = 0, . . . , n+ 1).

Let yi denote (i = 0, . . . , n+ 1) the approximations of the exact solution at xi. Let us
replace the derivatives of the solution to finite difference approximations:

yi−1 − 2yi + yi+1

h2
= f

(
xi, yi,

yi+1 − yi−1

2h

)
,

moreover let y0 = A and yn+1 = B. If f is nonlinear, then the solution is difficult. We
must use one of the solvers for nonlinear systems of equations (Newton’s method, fixed
point iteration).
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Finite difference method

Let us investigate only linear equations, that is the boundary value problems in the
form:

y′′(x) = u(x) + v(x)y + w(x)y′, y(a) = A, y(b) = B

Then the finite difference method results in the problem (u(xi) = ui, v(xi) = vi,
w(xi) = wi):

yi−1 − 2yi + yi+1

h2
= ui + viyi + wi

yi+1 − yi−1

2h
, (3)

moreover y0 = A and yn+1 = B. After rearrangement we obtain

y0 = A,

ai︷ ︸︸ ︷(
1

h2
+
wi
2h

)
yi−1

bi︷ ︸︸ ︷
−
(

2

h2
+ vi

)
yi +

ci︷ ︸︸ ︷(
1

h2
− wi

2h

)
yi+1 = ui

yn+1 = B,
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Finite difference method

In order to obtain the approximations yi, we have to solve the linear system:
b1 c1

a2 b2 c2

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn




y1

y2
...

yn−1

yn

 =


u1 − a1A

u2
...

un−1

un − cnB

 .

Assume that inf v > 0 and w 6≡ 0 is a bounded function on [a, b]. Moreover, let us
assume that the step size h is sufficiently small, that is h ≤ 2/ supx∈[a,b]{|w(x)|}.

Then the matrix is strictly diagonally dominant, that implies that the system can be
solved using the Gaussian elimination.
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Convergence

Def. 102. The previous scheme for the solution of the boundary value problem is
convergent if maxi=1,...,n |yi − y(xi)| = O(hr) (r ≥ 0) provided that h→ 0
(n→∞), moreover r is the order of the convergence.

Theorem
If y ∈ C4 then the investigated scheme is convergent with convergence order 2.

Proof. Let us compute first the LTE at the point xi:

τi =
y(xi−1)− 2y(xi) + y(xi+1)

h2
− ui − viy(xi)− wi

y(xi+1)− y(xi−1)

2h

=
h2

12
y′′′′(ξ)− wi

h2

6
y′′′(η).

That is with a positive constant C we have

|τi| ≤ h2M3C.

Thus the method is consistent and the order of the consistency is 2.
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Convergence

Let us subtract the scheme (3) from the inequility obtained for the LTE. Let us
intruduce the notation ei = y(xi)− yi for the error at the point xi. We obtain the
linear system of equations:

ei−1 − 2ei + ei+1

h2
− viei − wi

ei+1 − ei−1

2h
= τi,

that is componentwisely
b1 c1

a2 b2 c2

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn




e1

e2
...

en−1

en

 =


τ1

τ2
...

τn−1

τn

 .
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Convergence

The matrix of the system is the -1 multiple of an M-matrix. The main diagonal is
negative, the other elements are nonnegative, and the main diagonal is strictly
dominant. We can apply the estimation for the inverses of M-matrices. Together with
the expression for the LTE τi, we obtain that∥∥∥∥∥∥∥∥∥∥∥


e1

e2
...

en−1

en



∥∥∥∥∥∥∥∥∥∥∥
∞

≤ 1

infx∈[a,b] v(x)

∥∥∥∥∥∥∥∥∥∥∥


τ1

τ2
...

τn−1

τn



∥∥∥∥∥∥∥∥∥∥∥
∞

≤ M3h
2C

infx∈[a,b] v(x)
.

This shows second order convergence.
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The end

The end
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Summary of some main concepts

I Normed spaces (norms, normed spaces, equivalence of norms, Banach spaces,
Banach fixed point theorem)

I Vector and matrix norms

I Euclidean spaces (scalar product, euclidean space, orthogonality, Gram–Schmidt
orthogonalization, orthogonal polynomials)

I Special properties of matrices

I Eigenvalues and eigenvectors of matrices

I Diagonalizability of matrices
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Normed spaces
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Vector space (linear space)

Def. 104. A set V 6= ∅ is called (real) vector space, if an addition and a
multiplication with scalar operation is defined on it with the properties:

1. x+ y = y + x, ∀a, b ∈ V ;

2. (x+ y) + z = x+ (y + z), ∀x, y, z ∈ V ;

3. ∃o ∈ V , x+ o = x, ∀x ∈ V ;

4. ∀x ∈ V , ∃x̂ ∈ V , x+ x̂ = o;

5. 1 · x = x, ∀x ∈ V ;

6. α(x+ y) = αx+ αy, ∀x, y ∈ V , ∀α ∈ R;

7. (α+ β)x = αx+ βx, ∀x ∈ V , ∀α, β ∈ R;

8. α(βx) = (αβ)x, ∀x ∈ V , ∀α, β ∈ R.

Ex.: Vectors on the plane and in space, Rn, Rm×n, C[a, b], Pn etc. with the usual
operations.
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Special vector systems in vector spaces

Def. 105. A vector x ∈ V is called the linear combination of the vectors
x1, . . . , xk ∈ V , if ∃ α1, . . . αk ∈ R such that x = α1x1 + · · ·+ αkxk.

If W ⊂ V then we denote
Lin(W ) := {x ∈ V |x is the linear combination of the vectors in W}

Def. 106. The vectors x1, . . . , xk ∈ V (k ∈ N) are called lin. independent if
α1x1 + · · ·+ αkxk = o ⇒ αi = 0 (i = 1, . . . , k). If we have infinitely many vectors,
then we require the above property for all finite subset. (↔ lin. dependent)

Def. 107. The vector system B ⊂ V is called the basis of V if it is linearly
independent and Lin(B) = V .

If V possesses a bases with finitely many elements, then V is called finite dimensional
vector space. In finite dimensional vector spaces the number of elements in each basis
are equal. This is the dimension of the vector space.
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Normed spaces

Def. 108. The pair (V, ‖.‖) is called normed space if V is a vector space and
‖.‖ : V → R is a given function (so-called norm) with the properties:

1. ‖x‖ = 0⇔ x = o;

2. ‖αx‖ = |α| · ‖x‖, ∀x ∈ V,∀α ∈ R;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V .

Ex.

I Vectors on the plane and in the space, ‖~v‖ = is the usual length of the vectors.

I Rn, x = [x1, . . . , xn]T :
‖x‖1 = |x1|+ · · ·+ |xn|,
‖x‖2 =

√
x2

1 + · · ·+ x2
n,

‖x‖∞ = max{|x1|, . . . , |xn|}.
I C[a, b], f
‖f‖C[a,b] = maxx∈[a,b]{|f(x)|}

I Rm×n, A = [aij ] ∈ Rm×n
‖A‖ = maxi=1:m,j=1:n{|aij |} (see later).
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Convergence in normed spaces, V = (V, ‖.‖)

Def. 109. The distance of the elements x, y ∈ V is the value ‖x− y‖.
Thm. 110.

I ‖x− y‖ ≥ 0, ∀x, y ∈ V , ‖x− y‖ = 0⇔ x = y,

I ‖x− y‖ = ‖y − x‖, ∀x, y ∈ V ,

I ‖x− y‖ ≤ ‖x− z‖+ ‖z − y‖, ∀x, y, z ∈ V .

Def. 111. We say that the sequence {xk} ⊂ V tends to the element x ∈ V if the
real number sequence {‖xk − x‖} tends to zero. Notation: xk → x.

Def. 112. The norms ‖.‖1 és ‖.‖2 defined on the same vector space are called
equivalent if ∃c1, c2 > 0 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1, ∀x ∈ V.
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Convergence in normed spaces, V = (V, ‖.‖)

Rmk. Equivalent norms define the same convergence. In finite dimensional vector
spaces all norms are equivalent.

Def. 113. We say that the sequence {xk} ⊂ V is a Cauchy sequence if ∀ε > 0,
∃M ∈ N, ∀n,m ≥M ‖xn − xm‖ < ε.

Thm. 114. All convergent sequences in V are Cauchy sequences.

Rmk. The converse of the theorem is not true.

Def. 115. We say that the normed space (V, ‖.‖) is a Banach space if all Cauchy
sequences in V are convergent.

Example. The examples listed for normed spaces are examples also for Banach spaces.
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Banach fixed point theorem

Thm. 116. Let (V, ‖.‖) be a Banach space and ∅ 6= H ⊂ (V, ‖.‖) a closed subset
({xk} ⊂ H, xk → x implies x ∈ H). Let F : H → H be a contraction (∃ 0 ≤ q < 1,
‖F (x)− F (y)‖ ≤ q‖x− y‖, ∀ x, y ∈ H).

I Then F possesses one and only one fixed point in H, that is an element
x? ∈ H such that F (x?) = x?.

I With arbitrary initial element x0 ∈ H, the sequence produced with the
iteration xk+1 = F (xk) tends to x?.

I It is valid the estimation

‖x? − xm‖ ≤
qm

1− q
‖x1 − x0‖. (4)
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Euclidean spaces
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Euclidean spaces

Def. 117. The pair (V, 〈., .〉) is called euclidean space if V is a vector space and
〈., .〉 : (V × V )→ R is a so-called scalar product with the properties:

1. 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ,

2. 〈αx, y〉 = α〈x, y〉, for all x, y ∈ V, α ∈ R,

3. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉, for all x, y, z ∈ V ,

4. 〈x, x〉 > 0, for all o 6= x ∈ V .

Two important examples

I In the space of the column vectors Rn: with the notations x = [x1, . . . , xn]T and
y = [y1, . . . , yn]T , the assignment 〈x,y〉 = x1y1 + . . .+ xnyn defines a scalar
product (xTy).

I In the vector space C[a, b], the assignment

〈f, g〉 =

∫ b

a
s(x)f(x)g(x) dx

defines a scalar product for all positive weight function s ∈ C[a, b].
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Euclidean spaces

Thm. 118. In a euclidean space (V, 〈., .〉), the assignment ‖x‖ =
√
〈x, x〉 defines a

norm (norm induced be the scalar product).

Def. 119.

I x, y ∈ V orthogonal if 〈x, y〉 = 0,

I x1, x2, . . . ∈ V orthogonal vector system if the vectors are pairwise orthogonal,

I x ∈ V is normed if ‖x‖ = 1 is fulfilled in the norm induced by the scalar
product.

I x1, x2, . . . ∈ V is an orthonormal vector system if the vectors are pairwise
orthogonal and each vector is normed.
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Gram–Schmidt orthogonalization

Thm. 120. Let x1, . . . , xk be a linearly independent vector system in a euclidean
space. Then we can set an orthonormal vector system q1, . . . , qk with the
properties lin(q1, q2, . . . , ql) = lin(x1, x2, . . . , xl) for all l = 1, . . . , k.

Rmk. The polynomials p, q are called orthogonal on the interval [a, b] with respect to
the positive weight function s if∫ b

a
s(x)p(x)q(x) dx = 0.

Def. 121. Let us consider the polynomials 1, x, x2 on the interval [−1, 1]. Then the
polynomials obtained with the Gram–Schmidt orthogonalization using the weight
function s(x) ≡ 1 in the scalar product are called Legendre polynomials, while with
the weight function s(x) = 1/

√
1− x2 we obtain the so-called Chebyshev

polynomials.
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Orthogonal polynomials

Degree Legendre Chebyshev

0 1 1
1 x x
2 (3x2 − 1)/2 2x2 − 1
3 (5x3 − 3x)/2 4x3 − 3x
4 (35x4 − 30x2 + 3)/8 8x4 − 8x2 + 1

T0 = 1, T1 = x
Chebyshev: Tk+1 = 2xTk − Tk−1.
Legendre: (k + 1)Tk+1 = (2k + 1)xTk − kTk−1.
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Orthogonal polynomials

Thm. 122. Let us suppose that the polynomials p0, p1, . . . (subscripts denote the
degrees) are pairwise orthogonal on the interval [a, b] with respect to the positive
weight function s. Then all roots of the polynomial are real, single and located in
the interval [a, b].

Proof. Let us consider the polynomial pl and denote the distinct real roots from [a, b]
with odd multiplicity by z1, . . . , zk. If k = l, then the statement is true, if k < l, then
let us consider the polynomial p(x) = (x− z1) . . . (x− zk) (p ≡ 1 if k = 0), which has
degree k. The polynomial pl · p has degree (l + k) and it does not change sign in the
interval [a, b]. Thus the condition∫ b

a
pl(x)p(x)s(x) dx = 0

cannot hold. This completes the proof.
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Special properties of matrices
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Special matrices

I Band matrix: ∃p, q ∈ N, ai,j = 0 if j < i− p or i < j − q. 1 + p+ q is the
so-called bandwidth.

I Diagonal matrix: offdiagonal elements are zero (p = 0, q = 0), I identity matrix.

I Upper triangular matrix: elements ”below” the diagonal are zero (p = 0).

I Lower triangular matrix: elements ”above” the diagonal are zero (q = 0).

I Upper Hessenberg matrix: elements ”below” the subdiagonal are zero (p = 1).

I Lower Hessenberg matrix: elements ”above” the superdiagonal are zero (q = 1).
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Special matrices

I Tridiagonal matrix: all elements outside the main, sub- and superdiagonals are
zero. (p = q = 1).

I Symmetric matrix: AT = A

I Skew-symmetric matrix: AT = −A

I The vectors x and y ∈ Rn are called orthogonal if xTy = 0. Moreover, we
trivially have yTx = 0. If x and y are orthogonal, then ‖x + y‖22 = ‖x‖22 + ‖y‖22
(Pythagorean theorem).

Orthogonal matrix: AAT = ATA = I

(‖Ax‖22 = xTATAx = ‖x‖22, ‖A‖2 = 1, ‖AB‖2 = ‖B‖2)
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Special matrices

I P is a permutation matrix if, with the notation ek = [0, . . . , 0,

k-adik︷︸︸︷
1 , 0, . . . , 0]T

(k = 1, . . . , n), P = [ei1 , . . . , ein ], where i1, . . . , in is a permutation of the
numbers 1, 2, . . . , n. The product AP rearranges the columns of A in the order
i1, . . . , in, while the product PTA does the same with the rows of A. It is valid
the relation PPT = PTP = I.

I Let A be a symmetric matrix, and we investigate the possible values of the
expression f(x) := xTAx if x 6= 0:
– always positive (negative): A positive (negative) definite,
– always nonnegative (nonpositive): A positive (negative) semidefinite,
– can be both positive and negative: A indefinite.

I Diagonally dominant matrix: |aii| ≥
∑n

j=1,j 6=i |aij |, ∀i = 1, . . . , n. Strictly
diagonally dominant matrix if ”>” is valid.
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Eigenvalues and eigenvectors of matrices
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Eigenvalues and eigenvectors

Def. 123. Suppose that there is a vector v 6= 0 and a number λ to the matrix
A ∈ Rn×n such that Av = λv. Then the number λ is called the eigenvalue of the
matrix A, while the vector v is called an eigenvector corresponding to the
eigenvalue λ.

Thm. 124. Eigenvalues are the solutions of the so-called characteristic equation
det(A− λI) = 0. (Real values or complex conjugate pairs.) The number of
eigenvalues counted with multiplicity is n (algebraic multiplicity). Proof. Trivial.

Thm. 125. The linear combinations of eigenvectors are also eigenvectors (6= 0).
Proof. Trivial.

Thm. 126. ∃A−1 ⇔ λi 6= 0, ∀ i = 1, . . . , n. Proof. Trivial.
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Eigenvalues and eigenvectors

Thm. 127.

det(A) =

n∏
i=1

λi, tr(A) =

n∑
i=1

λi.

Proof. It can be proven with investigation of the coefficients of the characteristic
polynomial.

Rmk. The eigenvalues can be complex numbers. In this case the eigenvectors also have
complex elements.

Def. 128. For complex matrices A, AH denotes the transpose conjugate of the
matrix. If AH = A is valid, then the matrix is called hermitian matrix. A matrix
in unitary if AHA = AAH = I.
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Eigenvalues and eigenvectors

Thm. 129. All eigenvalues of symmetric (real) matrices are real, the eigenvectors
can be chosen to real vectors.

Proof. Let v be an eigenvector with the eigenvalue λ. Then vHAv = vHλv = λvHv.
Trivially

(vHAv)H = vHAv, (vHv)H = vHv,

that is these are 1× 1 matrices. The conjugate transpose of these matrices are
themselves. Thus λ must be real. The eigenvectors are the solutions of the system of
equations (A− λI)x = 0, which can be chosen to be real.
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Eigenvalues and eigenvectors

Thm. 130. All eigenvalues of symmetric, positive (semi)definite matrices are
(nonnegative) positive.

Proof. Let v be an eigenvector with the eigenvalue λ (real). Then the statement
follows from the equalities vTAv = vTλv = λvTv > 0 and vTv > 0 (the proof is
similar for semidefinite matrices).

Def. 131. The greatest absolute value of the eigenvalues of the matrix A ∈ Rn×n is
called the spectral radius of A. Notation: %(A). That is

%(A) = max{|λi| |λi is an eigenvalue of A}.
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Gershgorin theorem

Thm. 132. Let us consider the matrix A ∈ Rn×n. Let Ki be the closed circle on
the complex plane defined as follows. Its center is aii and its radius is

∑n
j=1,j 6=i |aij |

(i = 1, . . . , n). Then all the eigenvalues of the matrix are in the set ∪iKi.

Proof. Let λ be an eigenvalue of the matrix. If λ equals one of the diagonal elements,
then the statement is true for this eigenvalue. Otherwise, let us write A in the form
A = D + T, where D is the diagonal matrix of A. A− λI is singular, thus there
exists a vector x 6= 0, with which (A− λI)x = 0, that is (D− λI)x = −Tx.
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Gershgorin theorem

Hence
‖x‖∞ ≤ ‖(D− λI)−1T‖∞‖x‖∞,

that is

1 ≤
∑n

j=1,j 6=k |akj |
|akk − λ|

for some index k = 1, . . . , n. Thus λ ∈ Kk.

Rmk. When the union of s Gershgorin circles is disjoint from the other circles, then the
union contains exactly s eigenvalues (2. Gershgorin theorem).
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Diagonalizability of matrices
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Diagonalizability

Def. 133. Two quadratic matrices (A,B) are similar if ∃ S nonsingular matrix, for
which B = S−1AS.

Thm. 134. The eigenvalues of similar matrices are equal.

Proof.
det(B− λI) = det(S−1AS− λI)

= det(S−1)det(A− λI)det(S) = det(A− λI).

Rmk. If v is an eigenvector of B then Sv is an eigenvector of A.

Def. 135. A matrix A is called diagonalizable if it is similar to a diagonal matrix.
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Diagonalizability

Ex.: Not diagonalizable:

A =

[
1 1
0 1

]
. 1 is double eigenvalue, thus it must be similar to the identity matrix but then
A = S−1IS = I, which is not true.

Thm. 136. Eigenvectors that belong to different eigenvalues are linearly
independent.

Proof. Suppose Av = λv és Awi = µwi (i = 1, . . . , l), λ 6= µ and v =
∑l

i=1 αiwi

for some constant αi 6= 0. Then

λv = Av = A

l∑
i=1

αiwi = µ

l∑
i=1

αiwi = µv,

which implies the equality λ = µ.

Cor.: When all the eigenvectors of a matrix are different, then the matrix has a linearly
independent eigenvector system.
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Diagonalizability

Thm. 137. An n× n matrix is diagonalizable if and only if it has a linearly
independent eigenvector system with n vectors.

Proof. ⇐ Avj = λjvj (j = 1, . . . , n)

A
[

v1 . . . vn
]︸ ︷︷ ︸

:=S

=
[

v1 . . . vn
]  λ1 0 0 . . .

0 λ2 0 . . .
. . .


︸ ︷︷ ︸

:=Λ

Thus S−1AS = Λ, that is the matrix is diagonalizable.

⇒ ∃S regular matrix, with which S−1AS = Λ for some diagonal matrix Λ. Then the
eigenvalues of A equal the elements of Λ. Since the system ej is an eigenvector
system of Λ, Sej is an eigenvector system of A. These are linearly independent
vectors because of the regularity of S.
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Diagonalizability

Def. 138. A matrix A is called normal if AHA = AAH .

Thm. 139. Normal matrices are diagonalizable.

Proof. Let λ1 and v1 be an eigenvalue and the corresponding eigenvector of the matrix
(these always exist - they can be complex). Let v1 satisfy the condition vH1 v1 = 1 (the
vector is normed). Let us extend this vector to a unitary system (v2, . . . ,vn). Then

A
[

v1 . . . vn
]︸ ︷︷ ︸

:=S1 unitér

=
[

v1 . . . vn
]

λ1 ∗ ∗ . . .
0 ∗ ∗ . . .

. . .

0 ∗ ∗ . . .

 .
Thus

SH1 AS1 =

[
λ1 ∗
0 A2

]
.
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Diagonalizability

Let us repeat the previous procedure for the matrix A2! There exists a unitary matrix
S̃2 such that

S̃H2 A2S̃2 =


λ2 ∗ ∗ . . .
0 ∗ ∗ . . .

. . .

0 ∗ ∗ . . .

 .
Let

S2 =

[
1 0

0 S̃2

]
.

Then

SH2 SH1 AS1S2 =


λ1 ∗ ∗ . . .
0 λ2 ∗ . . .

. . .

0 0 ∗ . . .

 .
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Diagonalizability

Similarly, we can obtain the unitary matrices S3, . . . ,Sn−1. With these matrices we
have

SHn−1 . . .S
H
2 SH1 AS1S2 . . .Sn−1 =


λ1 ∗ ∗ . . . ∗
0 λ2 ∗ . . . ∗

. . .

0 0 0 . . . λn


︸ ︷︷ ︸

:=T (upper triangular)

.

Let S = S1 . . .Sn−1. This is a unitary matrix.

THT = SHAHSSHAS = SHAHAS,

TTH = SHASSHAHS = SHAAHS,

thus T is normal. T can be upper triangular only if it is diagonal.
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Diagonalizability

Rmk. Every matrix can be written in the form A = STSH , where S is unitary and T
is an upper triangular matrix. This is the so called Schur decomposition.

Rmk. Normal matrices can be diagonalized with a unitary matrix. Matrices that are
diagonalizable with a unitary matrix are normal.

Rmk. Real normal matrices are e.g. symmetric, skew-symmetric and orthogonal
matrices.

Thm. 140. A real matrix is diagonalizable with an orthogonal matrix if and only if
it is symmetric.

Proof. ⇒ Let S be orthogonal and A = SΛST . Then AT = SΛST = A, which shows
the symmetry.
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Diagonalizability

⇐ Let vλ and vµ be two eigenvalues corresponding to two different eigenvectors (λ
and µ).

vTλAvµ = vTλµvµ = µvTλvµ,

vTµAvλ = vTµλvλ = λvTµvλ = λvTλvµ

These two values must be equal. This is possible only if vTλvµ = 0. Thus the
eigenvectors corresponding to different eigenvalues are orthogonal. Thus we can
choose an orthonormal system of eigenvectors. The matrix can be diagonalized with
the matrix that have the orthonormal eigenvectors in the columns.
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